6

我如何根据索引公式“雕刻”或屏蔽 2D numpy 数组?我不关心元素值是什么,只关心它在数组中的位置。

例如,给定一个 mxm 数组,我如何提取地址符合的所有元素

for i in range(0,m):
    for j in range(0,m):
        if j-i-k>=0:
            A[i,j] = 1
        elif j-p-k>=0:
            A[i,j] = 1
        elif i-k>=0:
            A[i,j] = 1
        else:
            A[i,j] = 0
        j=j+1
    i=i+1

在哪里

k 和 p 是任意栅栏

认为

k<m
p<m

这最终看起来像一个对角切片 + 一个水平切片 + 一个垂直切片。没有上面的 for 循环可以完成吗?

4

3 回答 3

3
In [1]: import numpy as np

In [2]: k = 2

In [3]: i, j = np.ogrid[0:5,0:5]

In [4]: mask = (j-i-k < 0)

In [5]: mask
Out[5]: 
array([[ True,  True, False, False, False],
       [ True,  True,  True, False, False],
       [ True,  True,  True,  True, False],
       [ True,  True,  True,  True,  True],
       [ True,  True,  True,  True,  True]], dtype=bool)

In [6]: mask.shape
Out[6]: (5, 5)

In [7]: mask.dtype
Out[7]: dtype('bool')
于 2012-11-19T19:40:00.990 回答
1
xdim,ydim = data.shape
k = 2
a, b = np.meshgrid(range(ydim),range(xdim))
mask = (b - a -k) < 0

new_data = data[mask]

new_data2 = np.array(data) # to force a copy
new_data2[~mask] = 0

new_data是一个向量,因为掩蔽过程(以这种方式完成)使阵列变平。您正在选择一个不能表示为数组的参差不齐的形状。如果您只想将未选择的值设置为 0,请使用 new_data2。

于 2012-11-19T19:42:34.143 回答
1

这是另一种使用方式np.indices

>>> import numpy as np
>>> a = np.arange(90).reshape(10,9)
>>> b = np.indices(a.shape)
>>> k = 2
>>> i = b[1] - b[0] - k
>>> a[i < 0]
array([ 0,  1,  9, 10, 11, 18, 19, 20, 21, 27, 28, 29, 30, 31, 36, 37, 38,
   39, 40, 41, 45, 46, 47, 48, 49, 50, 51, 54, 55, 56, 57, 58, 59, 60,
   61, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78,
   79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89])
于 2012-11-19T19:45:43.133 回答