0

我希望有人可以快速查看这个示例并帮助我找到一种更好更有效的方法来解决这个问题。我想运行一个模拟来检查动物如何在一组特定条件下在站点之间移动。我有 5 个站点和一些初始概率,

N<-5 # number of sites
sites<-LETTERS[seq(from=1,to=N)]
to.r<-rbind(sites)

p.move.r<-seq.int(0.05,0.95,by=0.1) # prob of moving to a new site
p.leave<-0.01*p.move.r # prob of leaving the system w/out returning
p.move.out<-0.01*p.move.r # prob of moving in/out
p.stay<-1-(p.move.r+p.leave+p.move.out) # prob of staying in the same site 

对于这个例子,我只包括了 50 个模拟,但实际上我希望至少有 1000 个模拟,

set.seed(13973)

reps<-50 # number of replicates/simulations
steps<-100 # number of time steps (hours, days, weeks, etc)
random<-runif(10000,0,1) # generating numbers from a random distribution

# Construct empty df to fill with data

rep.movements<-matrix(NA,nrow=reps,ncol=steps)
colnames(rep.movements)<-c(1:steps);rownames(rep.movements)<-c(1:reps)

rep.use<-matrix(NA,nrow=reps,ncol=N)
colnames(rep.use)<-c(reefs);rownames(rep.use)<-c(1:reps)

# Outer loop to run each of the initial parameters

for(w in 1:length(p.stay)){
     p.move<-matrix((p.move.r[w]/(N-1)),N,N)
     diag(p.move)<-0

# Construction of distance matrix
move<-matrix(c(0),nrow=(N+2),ncol=(N+2),dimnames=list(c(sites,"NA","left"),c(sites,"NA","left")))
from<-array(0,c((N+2),(N+2)),dimnames=list(c(sites,"NA","left"),c(sites,"NA","left")))
to<-array(0,c((N+2),(N+2)),dimnames=list(c(sites,"NA","left"),c(sites,"NA","left")))

# Filling movement-Matrix construction

for(from in 1:N){
    for(to in 1:N){
      if(from==to){move[from,to]<-p.stay[w]} else {move[from,to]<-p.move[from,to]}
      move[,(N+1)]<-(1-(p.leave[w]+p.move.out[w]))/N
      move[,(N+2)]<-(1-(p.leave[w]+p.move.out[w]))/N
      move[(N+1),]<-p.move.out[w]
      move[(N+2),]<-p.leave[w] 
}

}

这个想法是使用这个累积概率矩阵来根据随机数确定动物的命运,

 cumsum.move<-cumsum(data.frame(move)) # Cumulative sum of probabilities

在这个累积矩阵中,字母“A”、“B”、“C”、“D”和“E”代表不同的地点,“NA”代表在未来时间步离开和回来的概率,“离开”表示离开系统并且不再回来的概率。然后我使用随机数列表与累积概率矩阵进行比较,并确定该特定动物的“命运”。

for(o in 1:reps){

result<-matrix(as.character(""),steps) # Vector for storing sites
x<-sample(random,steps,replace=TRUE) # sample array of random number 
time.step<-data.frame(x) # time steps used in the simulation (i)
colnames(time.step)<-c("time.step")
time.step$event<-""

j<-sample(1:N,1,replace=T) # first column to be selected 
k<-sample(1:N,1,replace=T) # selection of column for ind. that move in/out  

for(i in 1:steps){
  for (t in 1:(N+1)){
    if(time.step$time.step[i]<cumsum.move[t,j]){
    time.step$event[i]<-to.r[t]
    break
   }
 }

 ifelse(time.step$event[i]=="",break,NA) 
 result[i]<-time.step$event[i]
 j<-which(to.r==result[i]) 
 if(length(j)==0){j<-k} 
}

result<-time.step$event

# calculate frequency/use for each replicate

use<-table(result)
use.tab<-data.frame(use)
use.tab1<-use.tab[-which(use.tab==""),]
mergeuse<-merge(use.tab2,use.tab,all.x=TRUE)
mergeuse[is.na(mergeuse)]<-0

# insert data into empty matrix

rep.movements[o,]<-result
rep.use[o,]<-mergeuse$Freq

}

} 
  # for the outer loop I have some matrices to store the results for each parameter,
  # but for this example this is not important
rep.movements
rep.use

现在,主要问题是为每个初始参数(本例中为 10 个值)运行所有模拟需要很长时间。我需要找到一种更好/更有效的方法来跨所有初始参数运行 1000 个模拟/20 个站点。我不太熟悉加快这项任务的功能或其他方法。任何想法或建议将不胜感激。

非常感谢提前,

4

1 回答 1

1

让我们首先将您的代码包装在一个函数中。我还添加了set.seed命令以使结果可重现。您需要在运行模拟之前删除它们。

sim1 <- function(reps=50, steps=100 ) {

  N<-5 # number of sites
  sites<-LETTERS[seq(from=1,to=N)]
  to.r<-rbind(sites)

  p.move.r<-seq.int(0.05,0.90,by=0.05) # prob of moving to a new site
  p.leave<-0.01*p.move.r # prob of leaving the system w/out returning
  p.move.out<-0.01*p.move.r # prob of moving in/out
  p.stay<-1-(p.move.r+p.leave+p.move.out) # prob of staying in the same site 

  set.seed(42)
  random<-runif(10000,0,1) # generating numbers from a random distribution

  cumsum.move <- read.table(text="A         B         C         D         E    NA.   left
                            A    0.0820000 0.3407822 0.6392209 0.3516242 0.3925942 0.1964 0.1964
                            B    0.1254937 0.4227822 0.6940040 0.3883348 0.4196630 0.3928 0.3928
                            C    0.7959865 0.8730183 0.7760040 0.7930623 0.8765180 0.5892 0.5892
                            D    0.8265574 0.8980259 0.8095507 0.8750623 0.9000000 0.7856 0.7856
                            E    0.9820000 0.9820000 0.9820000 0.9820000 0.9820000 0.9820 0.9820
                            NA.   0.9910000 0.9910000 0.9910000 0.9910000 0.9910000 0.9910 0.9910
                            left 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000 1.0000",header=TRUE)

  cumsum.move <- as.matrix(cumsum.move)

  for(o in 1:reps){

    result<-matrix(as.character(""),steps) # Vector for storing sites
    set.seed(42)
    x<-sample(random,steps,replace=TRUE) # sample array of random number 
    time.step<-data.frame(x) # time steps used in the simulation (i)
    colnames(time.step)<-c("time.step")
    time.step$event<-""

    set.seed(41)
    j<-sample(1:N,1,replace=T) # first column to be selected 
    set.seed(40)
    k<-sample(1:N,1,replace=T) # selection of column for ind. that move in/out  

    for(i in 1:steps){
      for (t in 1:(N+1)){
        if(time.step$time.step[i]<cumsum.move[t,j]){
          time.step$event[i]<-to.r[t]
          break
        }
      }

      ifelse(time.step$event[i]=="",break,NA) 
      result[i]<-time.step$event[i]
      j<-which(to.r==result[i]) 
      if(length(j)==0){j<-k} 
    }

    result<-time.step$event
  }
  result
}

请注意,result在 o 的每次迭代中都会被覆盖。我不认为你想要那个,所以我解决了这个问题。此外,您使用data.frame循环内部。作为一般规则,您应该避免data.frames像瘟疫这样的内部循环。尽管它们非常方便,但就效率而言,它们很糟糕。

sim2 <- function(reps=50, steps=100) {

  N<-5 # number of sites
  sites<-LETTERS[seq(from=1,to=N)]
  to.r<-rbind(sites)

  p.move.r<-seq.int(0.05,0.90,by=0.05) # prob of moving to a new site
  p.leave<-0.01*p.move.r # prob of leaving the system w/out returning
  p.move.out<-0.01*p.move.r # prob of moving in/out
  p.stay<-1-(p.move.r+p.leave+p.move.out) # prob of staying in the same site 

  set.seed(42)
  random<-runif(10000,0,1) # generating numbers from a random distribution

  cumsum.move <- read.table(text="A         B         C         D         E    NA.   left
                            A    0.0820000 0.3407822 0.6392209 0.3516242 0.3925942 0.1964 0.1964
                            B    0.1254937 0.4227822 0.6940040 0.3883348 0.4196630 0.3928 0.3928
                            C    0.7959865 0.8730183 0.7760040 0.7930623 0.8765180 0.5892 0.5892
                            D    0.8265574 0.8980259 0.8095507 0.8750623 0.9000000 0.7856 0.7856
                            E    0.9820000 0.9820000 0.9820000 0.9820000 0.9820000 0.9820 0.9820
                            NA.   0.9910000 0.9910000 0.9910000 0.9910000 0.9910000 0.9910 0.9910
                            left 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000 1.0000",header=TRUE)

  cumsum.move <- as.matrix(cumsum.move)

  res <- list()
  for(o in 1:reps){

    result<-character(steps) # Vector for storing sites
    set.seed(42)
    time.step<-sample(random,steps,replace=TRUE) # sample array of random number 
    #time.step<-data.frame(x) # time steps used in the simulation (i)
    #colnames(time.step)<-c("time.step")
    #time.step$event<-""
    event <- character(steps)

    set.seed(41)
    j<-sample(1:N,1,replace=T) # first column to be selected 
    set.seed(40)
    k<-sample(1:N,1,replace=T) # selection of column for ind. that move in/out  

    for(i in 1:steps){
      for (t in 1:(N+1)){
        if(time.step[i]<cumsum.move[t,j]){
          event[i]<-to.r[t]
          break
        }
      }

      ifelse(event[i]=="",break,NA) 
      result[i]<-event[i]
      j<-which(to.r==result[i]) 
      if(length(j)==0){j<-k} 
    }

    res[[o]]<-event
  }
  do.call("rbind",res)
}

两个函数给出相同的结果吗?

res1 <- sim1()
res2 <- sim2()
all.equal(res1,res2[1,])
[1] TRUE

新版本更快吗?

library(microbenchmark)
microbenchmark(sim1(),sim2())

Unit: milliseconds
    expr       min        lq    median        uq       max
1 sim1() 204.46339 206.58508 208.38035 212.93363 269.41693
2 sim2()  77.55247  78.39698  79.30539  81.73413  86.84398

嗯,三倍已经很不错了。我看不到进一步改进循环的可能性,因为那些breaks. 这只剩下并行化作为一种​​选择。

sim3 <- function(ncore=1,reps=50, steps=100) {
  require(foreach)
  require(doParallel)


  N<-5 # number of sites
  sites<-LETTERS[seq(from=1,to=N)]
  to.r<-rbind(sites)

  p.move.r<-seq.int(0.05,0.90,by=0.05) # prob of moving to a new site
  p.leave<-0.01*p.move.r # prob of leaving the system w/out returning
  p.move.out<-0.01*p.move.r # prob of moving in/out
  p.stay<-1-(p.move.r+p.leave+p.move.out) # prob of staying in the same site 

  set.seed(42)
  random<-runif(10000,0,1) # generating numbers from a random distribution

  cumsum.move <- read.table(text="A         B         C         D         E    NA.   left
                            A    0.0820000 0.3407822 0.6392209 0.3516242 0.3925942 0.1964 0.1964
                            B    0.1254937 0.4227822 0.6940040 0.3883348 0.4196630 0.3928 0.3928
                            C    0.7959865 0.8730183 0.7760040 0.7930623 0.8765180 0.5892 0.5892
                            D    0.8265574 0.8980259 0.8095507 0.8750623 0.9000000 0.7856 0.7856
                            E    0.9820000 0.9820000 0.9820000 0.9820000 0.9820000 0.9820 0.9820
                            NA.   0.9910000 0.9910000 0.9910000 0.9910000 0.9910000 0.9910 0.9910
                            left 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000 1.0000",header=TRUE)

  cumsum.move <- as.matrix(cumsum.move)

  #res <- list()
  #for(o in 1:reps){
  cl <- makeCluster(ncore)
  registerDoParallel(cl)
  res <- foreach(1:reps) %dopar% {

    result<-character(steps) # Vector for storing sites
    set.seed(42)
    time.step<-sample(random,steps,replace=TRUE) # sample array of random number 
    #time.step<-data.frame(x) # time steps used in the simulation (i)
    #colnames(time.step)<-c("time.step")
    #time.step$event<-""
    event <- character(steps)

    set.seed(41)
    j<-sample(1:N,1,replace=T) # first column to be selected 
    set.seed(40)
    k<-sample(1:N,1,replace=T) # selection of column for ind. that move in/out  

    for(i in 1:steps){
      for (t in 1:(N+1)){
        if(time.step[i]<cumsum.move[t,j]){
          event[i]<-to.r[t]
          break
        }
      }

      ifelse(event[i]=="",break,NA) 
      result[i]<-event[i]
      j<-which(to.r==result[i]) 
      if(length(j)==0){j<-k} 
    }

    #res[[o]]<-event
    event
  }
  stopCluster(cl)
  do.call("rbind",res)
}

结果一样吗?

res3 <- sim3()
all.equal(res1,c(res3[1,]))
[1] TRUE

快点?(让我们在我的 Mac 上使用 4 个内核。您可能会尝试访问具有更多内核的服务器。)

microbenchmark(sim1(),sim2(),sim3(4))
Unit: milliseconds
     expr        min         lq     median         uq       max
1  sim1()  202.28200  207.64932  210.32582  212.69869  255.2732
2  sim2()   75.39295   78.95882   80.01607   81.49027  125.0866
3 sim3(4) 1031.02755 1046.41610 1052.72710 1061.74057 1091.2175

那看起来很可怕。但是,该测试对并行功能是不公平的。该函数被调用 100 次,只有 50 次重复。这意味着我们获得了并行化的所有开销,但几乎没有从中受益。让我们更公平:

microbenchmark(sim1(rep=10000),sim2(rep=10000),sim3(ncore=4,rep=10000),times=1)
Unit: seconds
                          expr      min       lq   median       uq      max
1            sim1(rep = 10000) 42.16821 42.16821 42.16821 42.16821 42.16821
2            sim2(rep = 10000) 16.13822 16.13822 16.13822 16.13822 16.13822
3 sim3(ncore = 4, rep = 10000) 38.18873 38.18873 38.18873 38.18873 38.18873

更好,但仍然不令人印象深刻。如果复制和步骤的数量进一步增加,并行功能看起来不错,但我不知道你是否需要。

于 2012-11-18T10:37:37.730 回答