61

我有一个 CSV 文件,下面是它的样例:

Year:  Dec: Jan:
1      50   60
2      25   50
3      30   30
4      40   20
5      10   10

我知道如何读取文件并打印每一列(例如 - ['Year', '1', '2', '3', etc])。但我真正想做的是读取行,就像这样['Year', 'Dec', 'Jan'],然后['1', '50', '60']等等。

然后我想将这些数字存储['1', '50', '60']到变量中,以便稍后将它们汇总,例如:

Year_1 = ['50', '60']. 那我就可以了sum(Year_1) = 110

我将如何在 Python 3 中做到这一点?

4

10 回答 10

108

使用csv模块

import csv

with open("test.csv", "r") as f:
    reader = csv.reader(f, delimiter="\t")
    for i, line in enumerate(reader):
        print 'line[{}] = {}'.format(i, line)

输出:

line[0] = ['Year:', 'Dec:', 'Jan:']
line[1] = ['1', '50', '60']
line[2] = ['2', '25', '50']
line[3] = ['3', '30', '30']
line[4] = ['4', '40', '20']
line[5] = ['5', '10', '10']
于 2012-11-17T06:48:42.823 回答
42

你可以这样做:

with open("data1.txt") as f:
    lis = [line.split() for line in f]        # create a list of lists
    for i, x in enumerate(lis):              #print the list items 
        print "line{0} = {1}".format(i, x)

# output 
line0 = ['Year:', 'Dec:', 'Jan:']
line1 = ['1', '50', '60']
line2 = ['2', '25', '50']
line3 = ['3', '30', '30']
line4 = ['4', '40', '20']
line5 = ['5', '10', '10']

或者 :

with open("data1.txt") as f:
    for i, line in enumerate(f):             
        print "line {0} = {1}".format(i, line.split())

# output         
line 0 = ['Year:', 'Dec:', 'Jan:']
line 1 = ['1', '50', '60']
line 2 = ['2', '25', '50']
line 3 = ['3', '30', '30']
line 4 = ['4', '40', '20']
line 5 = ['5', '10', '10']

编辑:

with open('data1.txt') as f:
    print "{0}".format(f.readline().split())
    for x in f:
        x = x.split()
        print "{0} = {1}".format(x[0],sum(map(int, x[1:])))

# output          
['Year:', 'Dec:', 'Jan:']
1 = 110
2 = 75
3 = 60
4 = 60
5 = 20
于 2012-11-17T06:59:23.573 回答
20

逐列阅读更难?

无论如何,这会读取该行并将值存储在列表中:

for line in open("csvfile.csv"):
    csv_row = line.split() #returns a list ["1","50","60"]

现代解决方案:

# pip install pandas
import pandas as pd 
df = pd.read_table("csvfile.csv", sep=" ")
于 2012-11-17T06:39:37.850 回答
7

最简单的方法是这样:

from csv import reader

# open file in read mode
with open('file.csv', 'r') as read_obj:
    # pass the file object to reader() to get the reader object
    csv_reader = reader(read_obj)
    # Iterate over each row in the csv using reader object
    for row in csv_reader:
        # row variable is a list that represents a row in csv
        print(row)

output:
['Year:', 'Dec:', 'Jan:']
['1', '50', '60']
['2', '25', '50']
['3', '30', '30']
['4', '40', '20']
['5', '10', '10']
于 2020-05-23T16:55:45.010 回答
5
import csv

with open('filepath/filename.csv', "rt", encoding='ascii') as infile:
    read = csv.reader(infile)
    for row in read :
        print (row)

这将解决您的问题。不要忘记给出编码。

于 2016-08-03T11:20:14.047 回答
4
#  This program reads columns in a csv file
import csv
ifile = open('years.csv', "r")
reader = csv.reader(ifile)

# initialization and declaration of variables
rownum = 0
year = 0
dec = 0
jan = 0
total_years = 0`

for row in reader:
    if rownum == 0:
        header = row  #work with header row if you like
    else:
    colnum = 0
    for col in row:
        if colnum == 0:
            year = float(col)
        if colnum == 1:
            dec = float(col)
        if colnum == 2:
            jan = float(col)
        colnum += 1
    # end of if structure

# now we can process results
if rownum != 0:
    print(year, dec, jan)
    total_years = total_years + year
    print(total_years)

# time to go after the next row/bar
rownum += 1

ifile.close()

有点晚了,但仍然......您需要创建并识别名为“years.csv”的 csv 文件:

年份 十二月 一月 1 50 60 2 25 50 3 30 30 4 40 20 5 10 10

于 2016-07-24T10:33:32.327 回答
3

例子:

import pandas as pd

data = pd.read_csv('data.csv')

# read row line by line
for d in data.values:
  # read column by index
  print(d[2])
于 2019-06-02T06:14:08.570 回答
2

csv模块按行处理 csv 文件。如果要按列处理,pandas是一个很好的解决方案。

此外,有两种方法可以使用纯简单的 Python 代码获取所有(或特定)列。

1. csv.DictReader

with open('demo.csv') as file:
    data = {}
    for row in csv.DictReader(file):
        for key, value in row.items():
            if key not in data:
                data[key] = []
            data[key].append(value)

这很容易理解。

2. 带 zip 的 csv.reader

with open('demo.csv') as file:
    data = {values[0]: values[1:] for values in zip(*csv.reader(file))}

这不是很清楚,但很有效。

zip(x, y, z)transpose (x, y, z), 而x, y,z是列表​​。 *csv.reader(file)make (x, y, z)for zip,带有列名。

演示结果

的内容demo.csv

a,b,c
1,2,3
4,5,6
7,8,9

1的结果:

>>> print(data)
{'c': ['3', '6', '9'], 'b': ['2', '5', '8'], 'a': ['1', '4', '7']}

2的结果:

>>> print(data)
{'c': ('3', '6', '9'), 'b': ('2', '5', '8'), 'a': ('1', '4', '7')}
于 2019-09-02T09:45:04.790 回答
0

可以使用pandas库来做到这一点。

例子:

import numpy as np
import pandas as pd

file = r"C:\Users\unknown\Documents\Example.csv"
df1 = pd.read_csv(file)
df1.head()
于 2019-03-30T13:31:47.113 回答
0

我只是把我的解决方案留在这里。

import csv
import numpy as np

with open(name, newline='') as f:
    reader = csv.reader(f, delimiter=",")
    # skip header
    next(reader)
    # convert csv to list and then to np.array
    data  = np.array(list(reader))[:, 1:] # skip the first column

print(data.shape) # => (N, 2)

# sum each row
s = data.sum(axis=1)
print(s.shape) # => (N,)
于 2020-04-22T18:09:38.987 回答