我一直在创建 B 树的内存 C 实现,因为我在网上找不到可读的(即这个可怕的代码:http ://www.freewebs.com/attractivechaos/kbtree.h.html )。
它不太有效,因为有时在插入元素时它会找不到以前插入的元素。另外我不确定我的一般实现是否非常好,并且我正在以明智的方式进行插入。任何人都可以批评我所做的并找出为什么它一直不起作用吗?
显然 B 树比红黑树或 AVL 树更有效,因为每个节点的元素一起存储在内存中。这让我很感兴趣。
请注意,“顺序”是元素的数量,而不是子指针的数量。原因很简单,因为它对我来说更有意义。
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#define CB_BTREE_ORDER 8
#define CB_BTREE_HALF_ORDER CB_BTREE_ORDER/2
typedef struct{
void * parent;
void * children[CB_BTREE_ORDER + 1];
unsigned char numElements;
} CBBTreeNode;
typedef struct{
unsigned char found;
CBBTreeNode * node;
unsigned char pos;
} CBFindResult;
typedef struct{
unsigned char keySize;
unsigned char dataSize;
int nodeSize;
CBBTreeNode * root;
} CBAssociativeArray;
CBFindResult CBAssociativeArrayFind(CBAssociativeArray * self, unsigned char * key);
void CBAssociativeArrayInsert(CBAssociativeArray * self, unsigned char * key, void * data, CBFindResult pos, CBBTreeNode * right);
CBFindResult CBBTreeNodeBinarySearch(CBBTreeNode * self, unsigned char * key, unsigned char keySize);
void CBInitAssociativeArray(CBAssociativeArray * self, unsigned char keySize, unsigned char dataSize);
CBFindResult CBAssociativeArrayFind(CBAssociativeArray * self, unsigned char * key){
CBFindResult result;
CBBTreeNode * node = self->root;
for (;;) {
result = CBBTreeNodeBinarySearch(node, key, self->keySize);
if (result.found){
result.node = node;
return result;
}else{
if (node->children[result.pos])
node = node->children[result.pos];
else{
result.node = node;
return result;
}
}
}
}
void CBAssociativeArrayInsert(CBAssociativeArray * self, unsigned char * key, void * data, CBFindResult pos, CBBTreeNode * right){
// See if we can insert data in this node
unsigned char * keys = (unsigned char *)(pos.node + 1);
unsigned char * dataElements = keys + self->keySize * CB_BTREE_ORDER;
if (pos.node->numElements < CB_BTREE_ORDER) {
if (pos.node->numElements > pos.pos){
memmove(keys + (pos.pos + 1) * self->keySize, keys + pos.pos * self->keySize, (pos.node->numElements - pos.pos) * self->keySize);
memmove(dataElements + (pos.pos + 1) * self->dataSize, dataElements + pos.pos * self->dataSize, (pos.node->numElements - pos.pos) * self->dataSize);
memmove(pos.node->children + pos.pos + 2, pos.node->children + pos.pos + 1, (pos.node->numElements - pos.pos) * sizeof(*pos.node->children));
}
memcpy(keys + pos.pos * self->keySize, key, self->keySize);
memcpy(dataElements + pos.pos * self->dataSize, data, self->dataSize);
pos.node->children[pos.pos + 1] = right;
pos.node->numElements++;
}else{
CBBTreeNode * new = malloc(self->nodeSize);
unsigned char * newKeys = (unsigned char *)(new + 1);
unsigned char * newData = newKeys + self->keySize * CB_BTREE_ORDER;
new->numElements = CB_BTREE_HALF_ORDER;
pos.node->numElements = CB_BTREE_HALF_ORDER;
unsigned char * midKey;
unsigned char * midVal;
if (pos.pos >= CB_BTREE_HALF_ORDER) {
if (pos.pos == CB_BTREE_HALF_ORDER) {
memcpy(newKeys, keys + CB_BTREE_HALF_ORDER * self->keySize, CB_BTREE_HALF_ORDER * self->keySize);
memcpy(newData, dataElements + CB_BTREE_HALF_ORDER * self->dataSize, CB_BTREE_HALF_ORDER * self->dataSize);
memcpy(new->children + 1, pos.node->children + CB_BTREE_HALF_ORDER + 1, CB_BTREE_HALF_ORDER * sizeof(*new->children));
new->children[0] = right;
midKey = key;
midVal = data;
}else{
if (pos.pos > CB_BTREE_HALF_ORDER + 1){
memcpy(newKeys, keys + (CB_BTREE_HALF_ORDER + 1) * self->keySize, (pos.pos - CB_BTREE_HALF_ORDER - 1) * self->keySize);
memcpy(newData, dataElements + (CB_BTREE_HALF_ORDER + 1) * self->dataSize, (pos.pos - CB_BTREE_HALF_ORDER - 1) * self->dataSize);
}
memcpy(newKeys + (pos.pos - CB_BTREE_HALF_ORDER - 1) * self->keySize, key, self->keySize);
memcpy(newData + (pos.pos - CB_BTREE_HALF_ORDER - 1) * self->dataSize, data, self->dataSize);
memcpy(newKeys + (pos.pos - CB_BTREE_HALF_ORDER) * self->keySize, keys + pos.pos * self->keySize, (CB_BTREE_ORDER - pos.pos) * self->keySize);
memcpy(newData + (pos.pos - CB_BTREE_HALF_ORDER) * self->dataSize, dataElements + pos.pos * self->dataSize, (CB_BTREE_ORDER - pos.pos) * self->dataSize); // o 0 i 1 ii 2 iii 3 iv
memcpy(new->children, pos.node->children + CB_BTREE_HALF_ORDER + 1, (pos.pos - CB_BTREE_HALF_ORDER) * sizeof(*new->children));
new->children[pos.pos - CB_BTREE_HALF_ORDER] = right;
if (CB_BTREE_ORDER > pos.pos)
memcpy(new->children + pos.pos - CB_BTREE_HALF_ORDER + 1, pos.node->children + pos.pos + 1, (CB_BTREE_ORDER - pos.pos) * sizeof(*new->children));
midKey = keys + CB_BTREE_HALF_ORDER * self->keySize;
midVal = dataElements + CB_BTREE_HALF_ORDER * self->dataSize;
}
}else{
memcpy(newKeys, keys + CB_BTREE_HALF_ORDER * self->keySize, CB_BTREE_HALF_ORDER * self->keySize);
memcpy(newData, dataElements + CB_BTREE_HALF_ORDER * self->dataSize, CB_BTREE_HALF_ORDER * self->dataSize);
memcpy(new->children, pos.node->children + CB_BTREE_HALF_ORDER, (CB_BTREE_HALF_ORDER + 1) * sizeof(*new->children));
memmove(keys + (pos.pos + 1) * self->keySize, keys + pos.pos * self->keySize, (CB_BTREE_HALF_ORDER - pos.pos) * self->keySize);
memmove(dataElements + (pos.pos + 1) * self->dataSize, dataElements + pos.pos * self->dataSize, (CB_BTREE_HALF_ORDER - pos.pos) * self->dataSize);
if (CB_BTREE_HALF_ORDER > 1 + pos.pos)
memmove(pos.node->children + pos.pos + 2, pos.node->children + pos.pos + 1, (CB_BTREE_HALF_ORDER - pos.pos - 1) * self->dataSize);
memcpy(keys + pos.pos * self->keySize, key, self->keySize);
memcpy(dataElements + pos.pos * self->dataSize, data, self->dataSize);
pos.node->children[pos.pos + 1] = right;
midKey = keys + CB_BTREE_HALF_ORDER * self->keySize;
midVal = dataElements + CB_BTREE_HALF_ORDER * self->dataSize;
}
if ( ! pos.node->parent) {
self->root = malloc(self->nodeSize);
self->root->numElements = 0;
self->root->parent = NULL;
pos.node->parent = self->root;
self->root->children[0] = pos.node;
}
new->parent = pos.node->parent;
CBFindResult res = CBBTreeNodeBinarySearch(pos.node->parent, midKey, self->keySize);
res.node = pos.node->parent;
return CBAssociativeArrayInsert(self, midKey, midVal, res, new);
}
}
CBFindResult CBBTreeNodeBinarySearch(CBBTreeNode * self, unsigned char * key, unsigned char keySize){
CBFindResult res;
res.found = 0;
if ( ! self->numElements) {
res.pos = 0;
return res;
}
unsigned char left = 0;
unsigned char right = self->numElements - 1;
unsigned char * keys = (unsigned char *)(self + 1);
int cmp;
while (left <= right) {
res.pos = (right+left)/2;
cmp = memcmp(key, keys + res.pos * keySize, keySize);
if (cmp == 0) {
res.found = 1;
break;
}else if (cmp < 0){
if ( ! res.pos)
break;
right = res.pos - 1;
}else
left = res.pos + 1;
}
if (cmp > 0)
res.pos++;
return res;
}
void CBInitAssociativeArray(CBAssociativeArray * self, unsigned char keySize, unsigned char dataSize){
self->keySize = keySize;
self->dataSize = dataSize;
self->nodeSize = sizeof(*self->root) + (keySize + dataSize) * CB_BTREE_ORDER;
self->root = malloc(self->nodeSize);
self->root->parent = NULL;
self->root->numElements = 0;
for (unsigned char x = 0; x < CB_BTREE_ORDER + 1; x++)
self->root->children[x] = NULL;
}
int main(){
srand(1);
CBAssociativeArray array;
CBInitAssociativeArray(&array, 10, 10);
int size = CB_BTREE_ORDER * (CB_BTREE_ORDER + 2) * 10;;
unsigned char * keys = malloc(size);
for (int x = 0; x < size; x++) {
keys[x] = rand();
}
for (int x = 0; x < size; x += 10) {
CBAssociativeArrayInsert(&array, keys + x, keys + x, CBAssociativeArrayFind(&array, keys + x), NULL);
for (int y = 0; y <= x; y += 10) {
if ( ! CBAssociativeArrayFind(&array, keys + y).found) {
printf("RANDOM FIND FAIL %u - %u\n", y, x);
return 1;
}
}
}
return 0;
}
谢谢。