16

当你有正则表达式时,词法分析器很容易编写。今天我想用 Python 写一个简单的通用分析器,并想出了:

import re
import sys

class Token(object):
    """ A simple Token structure.
        Contains the token type, value and position. 
    """
    def __init__(self, type, val, pos):
        self.type = type
        self.val = val
        self.pos = pos

    def __str__(self):
        return '%s(%s) at %s' % (self.type, self.val, self.pos)


class LexerError(Exception):
    """ Lexer error exception.

        pos:
            Position in the input line where the error occurred.
    """
    def __init__(self, pos):
        self.pos = pos


class Lexer(object):
    """ A simple regex-based lexer/tokenizer.

        See below for an example of usage.
    """
    def __init__(self, rules, skip_whitespace=True):
        """ Create a lexer.

            rules:
                A list of rules. Each rule is a `regex, type`
                pair, where `regex` is the regular expression used
                to recognize the token and `type` is the type
                of the token to return when it's recognized.

            skip_whitespace:
                If True, whitespace (\s+) will be skipped and not
                reported by the lexer. Otherwise, you have to 
                specify your rules for whitespace, or it will be
                flagged as an error.
        """
        self.rules = []

        for regex, type in rules:
            self.rules.append((re.compile(regex), type))

        self.skip_whitespace = skip_whitespace
        self.re_ws_skip = re.compile('\S')

    def input(self, buf):
        """ Initialize the lexer with a buffer as input.
        """
        self.buf = buf
        self.pos = 0

    def token(self):
        """ Return the next token (a Token object) found in the 
            input buffer. None is returned if the end of the 
            buffer was reached. 
            In case of a lexing error (the current chunk of the
            buffer matches no rule), a LexerError is raised with
            the position of the error.
        """
        if self.pos >= len(self.buf):
            return None
        else:
            if self.skip_whitespace:
                m = self.re_ws_skip.search(self.buf[self.pos:])

                if m:
                    self.pos += m.start()
                else:
                    return None

            for token_regex, token_type in self.rules:
                m = token_regex.match(self.buf[self.pos:])

                if m:
                    value = self.buf[self.pos + m.start():self.pos + m.end()]
                    tok = Token(token_type, value, self.pos)
                    self.pos += m.end()
                    return tok

            # if we're here, no rule matched
            raise LexerError(self.pos)

    def tokens(self):
        """ Returns an iterator to the tokens found in the buffer.
        """
        while 1:
            tok = self.token()
            if tok is None: break
            yield tok


if __name__ == '__main__':
    rules = [
        ('\d+',             'NUMBER'),
        ('[a-zA-Z_]\w+',    'IDENTIFIER'),
        ('\+',              'PLUS'),
        ('\-',              'MINUS'),
        ('\*',              'MULTIPLY'),
        ('\/',              'DIVIDE'),
        ('\(',              'LP'),
        ('\)',              'RP'),
        ('=',               'EQUALS'),
    ]

    lx = Lexer(rules, skip_whitespace=True)
    lx.input('erw = _abc + 12*(R4-623902)  ')

    try:
        for tok in lx.tokens():
            print tok
    except LexerError, err:
        print 'LexerError at position', err.pos

它工作得很好,但我有点担心它效率太低。是否有任何正则表达式技巧可以让我以更有效/优雅的方式编写它?

具体来说,有没有办法避免线性循环所有正则表达式规则以找到适合的规则?

4

6 回答 6

12

我建议使用 re.Scanner 类,它没有记录在标准库中,但它非常值得使用。这是一个例子:

import re

scanner = re.Scanner([
    (r"-?[0-9]+\.[0-9]+([eE]-?[0-9]+)?", lambda scanner, token: float(token)),
    (r"-?[0-9]+", lambda scanner, token: int(token)),
    (r" +", lambda scanner, token: None),
])

>>> scanner.scan("0 -1 4.5 7.8e3")[0]
[0, -1, 4.5, 7800.0]
于 2010-11-09T16:59:03.160 回答
7

您可以使用“|”将所有正则表达式合并为一个 运算符,并让正则表达式库完成识别标记的工作。应注意确保令牌的偏好(例如,避免将关键字匹配为标识符)。

于 2008-09-25T15:54:53.540 回答
7

我在 python 文档中找到了这个。它只是简单而优雅。

import collections
import re

Token = collections.namedtuple('Token', ['typ', 'value', 'line', 'column'])

def tokenize(s):
    keywords = {'IF', 'THEN', 'ENDIF', 'FOR', 'NEXT', 'GOSUB', 'RETURN'}
    token_specification = [
        ('NUMBER',  r'\d+(\.\d*)?'), # Integer or decimal number
        ('ASSIGN',  r':='),          # Assignment operator
        ('END',     r';'),           # Statement terminator
        ('ID',      r'[A-Za-z]+'),   # Identifiers
        ('OP',      r'[+*\/\-]'),    # Arithmetic operators
        ('NEWLINE', r'\n'),          # Line endings
        ('SKIP',    r'[ \t]'),       # Skip over spaces and tabs
    ]
    tok_regex = '|'.join('(?P<%s>%s)' % pair for pair in token_specification)
    get_token = re.compile(tok_regex).match
    line = 1
    pos = line_start = 0
    mo = get_token(s)
    while mo is not None:
        typ = mo.lastgroup
        if typ == 'NEWLINE':
            line_start = pos
            line += 1
        elif typ != 'SKIP':
            val = mo.group(typ)
            if typ == 'ID' and val in keywords:
                typ = val
            yield Token(typ, val, line, mo.start()-line_start)
        pos = mo.end()
        mo = get_token(s, pos)
    if pos != len(s):
        raise RuntimeError('Unexpected character %r on line %d' %(s[pos], line))

statements = '''
    IF quantity THEN
        total := total + price * quantity;
        tax := price * 0.05;
    ENDIF;
'''

for token in tokenize(statements):
    print(token)

这里的诀窍是这条线:

tok_regex = '|'.join('(?P<%s>%s)' % pair for pair in token_specification)

此处(?P<ID>PATTERN)将使用 指定的名称标记匹配的结果ID

于 2013-02-17T08:51:33.957 回答
3

re.match被锚定。你可以给它一个位置参数:

pos = 0
end = len(text)
while pos < end:
    match = regexp.match(text, pos)
    # do something with your match
    pos = match.end()

看看 pygments,它提供了大量的词法分析器,用于具有不同实现的语法高亮目的,大多数基于正则表达式。

于 2008-09-25T15:38:49.430 回答
3

组合标记正则表达式可能会起作用,但您必须对其进行基准测试。就像是:

x = re.compile('(?P<NUMBER>[0-9]+)|(?P<VAR>[a-z]+)')
a = x.match('9999').groupdict() # => {'VAR': None, 'NUMBER': '9999'}
if a:
    token = [a for a in a.items() if a[1] != None][0]

过滤器是您必须进行一些基准测试的地方...

更新:我对此进行了测试,似乎您按照所述组合所有标记并编写如下函数:

def find_token(lst):
    for tok in lst:
        if tok[1] != None: return tok
    raise Exception

为此,您将获得大致相同的速度(也许快一点)。我相信加速必须在匹配的调用次数中,但是令牌识别的循环仍然存在,这当然会杀死它。

于 2008-09-25T19:24:13.210 回答
1

这不完全是您问题的直接答案,但您可能想查看ANTLR。根据文档,python 代码生成目标应该是最新的。

至于您的正则表达式,如果您坚持使用正则表达式,实际上有两种方法可以加快速度。第一个是按照在默认文本中找到正则表达式的概率顺序对正则表达式进行排序。您可以在代码中添加一个简单的分析器,为每种标记类型收集标记计数并在工作主体上运行词法分析器。另一种解决方案是对您的正则表达式进行桶排序(因为您的键空间,作为一个字符,相对较小),然后在对第一个字符执行单个区分后使用数组或字典来执行所需的正则表达式。

但是,我认为如果你打算走这条路,你真的应该尝试像ANTLR这样的东西,它更容易维护、更快,而且不太可能出现错误。

于 2008-09-25T15:40:47.287 回答