给定一个非空的项目数组。您必须将所有项目从右侧移动到奇数位置(从零开始),并从左侧移动到偶数位置,如下所示:
原始数据:0 2 4 6 8 10 12 14 1 3 5 7 9 11 13
结果:0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
O(n) 时间复杂度存在什么就地算法?它的实现方式是什么?
逆问题到这里就解决了(这个算法本质上可以倒过来,但是看起来会很难看)。
给定一个非空的项目数组。您必须将所有项目从右侧移动到奇数位置(从零开始),并从左侧移动到偶数位置,如下所示:
原始数据:0 2 4 6 8 10 12 14 1 3 5 7 9 11 13
结果:0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
O(n) 时间复杂度存在什么就地算法?它的实现方式是什么?
逆问题到这里就解决了(这个算法本质上可以倒过来,但是看起来会很难看)。
这里只是算法本身。有关详细信息、解释和替代方法,请参阅逆问题的答案。
这个问题比 OP 中提到的逆问题更简单,因为这里我们必须从较大的子数组开始重新排序子数组,顺序与循环领导算法相同(逆问题必须单独并以相反的顺序进行) ,从较小的开始以获得 O(N) 复杂度)。
我终于找到了正反问题的解决方案:
#include <iterator>
#include <algorithm>
#include <type_traits>
#include <limits>
#include <deque>
#include <utility>
#include <cassert>
template< typename Iterator >
struct perfect_shuffle_permutation
{
static_assert(std::is_same< typename std::iterator_traits< Iterator >::iterator_category, std::random_access_iterator_tag >::value,
"!");
using difference_type = typename std::iterator_traits< Iterator >::difference_type;
using value_type = typename std::iterator_traits< Iterator >::value_type;
perfect_shuffle_permutation()
{
for (difference_type power3_ = 1; power3_ < std::numeric_limits< difference_type >::max() / 3; power3_ *= 3) {
powers3_.emplace_back(power3_ + 1);
}
powers3_.emplace_back(std::numeric_limits< difference_type >::max());
}
void
forward(Iterator _begin, Iterator _end) const
{
return forward(_begin, std::distance(_begin, _end));
}
void
backward(Iterator _begin, Iterator _end) const
{
return backward(_begin, std::distance(_begin, _end));
}
void
forward(Iterator _begin, difference_type const _size) const
{
assert(0 < _size);
assert(_size % 2 == 0);
difference_type const left_size_ = *(std::upper_bound(powers3_.cbegin(), powers3_.cend(), _size) - 1);
cycle_leader_forward(_begin, left_size_);
difference_type const rest_ = _size - left_size_;
if (rest_ != 0) {
Iterator middle_ = _begin + left_size_;
forward(middle_, rest_);
std::rotate(_begin + left_size_ / 2, middle_, middle_ + rest_ / 2);
}
}
void
backward(Iterator _begin, difference_type const _size) const
{
assert(0 < _size);
assert(_size % 2 == 0);
difference_type const left_size_ = *(std::upper_bound(powers3_.cbegin(), powers3_.cend(), _size) - 1);
std::rotate(_begin + left_size_ / 2, _begin + _size / 2, _begin + (_size + left_size_) / 2);
cycle_leader_backward(_begin, left_size_);
difference_type const rest_ = _size - left_size_;
if (rest_ != 0) {
Iterator middle_ = _begin + left_size_;
backward(middle_, rest_);
}
}
private :
void
cycle_leader_forward(Iterator _begin, difference_type const _size) const
{
for (difference_type leader_ = 1; leader_ != _size - 1; leader_ *= 3) {
permutation_forward permutation_(leader_, _size);
Iterator current_ = _begin + leader_;
value_type first_ = std::move(*current_);
while (++permutation_) {
assert(permutation_ < _size);
Iterator next_ = _begin + permutation_;
*current_ = std::move(*next_);
current_ = next_;
}
*current_ = std::move(first_);
}
}
void
cycle_leader_backward(Iterator _begin, difference_type const _size) const
{
for (difference_type leader_ = 1; leader_ != _size - 1; leader_ *= 3) {
permutation_backward permutation_(leader_, _size);
Iterator current_ = _begin + leader_;
value_type first_ = std::move(*current_);
while (++permutation_) {
assert(permutation_ < _size);
Iterator next_ = _begin + permutation_;
*current_ = std::move(*next_);
current_ = next_;
}
*current_ = std::move(first_);
}
}
struct permutation_forward
{
permutation_forward(difference_type const _leader, difference_type const _size)
: leader_(_leader)
, current_(_leader)
, half_size_(_size / 2)
{ ; }
bool
operator ++ ()
{
if (current_ < half_size_) {
current_ += current_;
} else {
current_ = 1 + (current_ - half_size_) * 2;
}
return (current_ != leader_);
}
operator difference_type () const
{
return current_;
}
private :
difference_type const leader_;
difference_type current_;
difference_type const half_size_;
};
struct permutation_backward
{
permutation_backward(difference_type const _leader, difference_type const _size)
: leader_(_leader)
, current_(_leader)
, half_size_(_size / 2)
{ ; }
bool
operator ++ ()
{
if ((current_ % 2) == 0) {
current_ /= 2;
} else {
current_ = (current_ - 1) / 2 + half_size_;
}
return (current_ != leader_);
}
operator difference_type () const
{
return current_;
}
private :
difference_type const leader_;
difference_type current_;
difference_type const half_size_;
};
std::deque< difference_type > powers3_;
};