我刚刚开始使用推力,到目前为止我遇到的最大问题之一是似乎没有关于需要多少内存操作的文档。所以我不确定为什么下面的代码在尝试排序时会抛出 bad_alloc(在排序之前我仍然有超过 50% 的可用 GPU 内存,并且我在 CPU 上有 70GB 的 RAM)——任何人都可以解释一下这?
#include <thrust/device_vector.h>
#include <thrust/sort.h>
#include <thrust/random.h>
void initialize_data(thrust::device_vector<uint64_t>& data) {
thrust::fill(data.begin(), data.end(), 10);
}
int main(void) {
size_t N = 120 * 1024 * 1024;
char line[256];
try {
std::cout << "device_vector" << std::endl;
typedef thrust::device_vector<uint64_t> vec64_t;
// Each buffer is 900MB
vec64_t c[3] = {vec64_t(N), vec64_t(N), vec64_t(N)};
initialize_data(c[0]);
initialize_data(c[1]);
initialize_data(c[2]);
std::cout << "initialize_data finished... Press enter";
std::cin.getline(line, 0);
// nvidia-smi reports 48% memory usage at this point (2959MB of
// 6143MB)
std::cout << "sort_by_key col 0" << std::endl;
// throws bad_alloc
thrust::sort_by_key(c[0].begin(), c[0].end(),
thrust::make_zip_iterator(thrust::make_tuple(c[1].begin(),
c[2].begin())));
std::cout << "sort_by_key col 1" << std::endl;
thrust::sort_by_key(c[1].begin(), c[1].end(),
thrust::make_zip_iterator(thrust::make_tuple(c[0].begin(),
c[2].begin())));
} catch(thrust::system_error &e) {
std::cerr << "Error: " << e.what() << std::endl;
exit(-1);
}
return 0;
}
这就是我编译代码的方式
nvcc -o ./bad_alloc ./bad_alloc.cu