2

我正在尝试实现一个函数,该函数将查看数组的每个元素并确定该特定元素是否大于一个 INT 而小于另一个 INT。例如:

Return true if Arr[5] is >i && < u

我把它作为一个基本算法,它可以工作,但我想通过使用“分而治之”方法创建一段更有效的代码,但是我在使用递归来使其计数时遇到问题,以及我所拥有的所有示例看到的只是处理一个点的比较,而不是两个。任何人都可以对这种情况有所了解。(http://en.wikipedia.org/wiki/Divide_and_conquer_algorithm)

我的原始代码(线性):

int SimpleSort(int length) 
{ 
    int A[] = {25,5,20,10,50}; 
    int i = 25; //Less Than int 
    u = 2; //Greater Than 
    for(int Count = 0; Count < length; Count++) //Counter 
    { 
        if (A[Count] <= i && A[Count] >= u) //Checker 
            return true; 
    } return false;
}

到目前为止我已经收集到的示例代码(经过数小时的各种工作并使用不同的示例代码后没有运气:

int A[] = {5,10,25,30,50,100,200,500,1000,2000};
int i = 10; //Less Than
int u = 5;  //Greater Than


int min = 1;
int max = length;
int mid = (min+max)/2;

if (i < A[mid] && u > A[mid])
{
    min = mid + 1;

}
else
{
    max = mid - 1;
}
Until i <= A1[mid] && u >= A1[mid])

如果这个问题不清楚,对不起,请问您是否需要我详细说明。

4

3 回答 3

3

假设您的输入向量始终是排序的,我认为这样的事情可能对您有用。这是我能想到的最简单的形式,性能为 O(log n):

bool inRange(int lval, int uval, int ar[], size_t n)
{
    if (0 == n)
        return false;

    size_t mid = n/2;
    if (ar[mid] >= std::min(lval,uval))
    {
        if (ar[mid] <= std::max(lval,uval))
            return true;
        return inRange(lval, uval, ar, mid);
    }
    return inRange(lval, uval, ar+mid+1, n-mid-1);
}

这使用隐含的范围差异;即它总是使用两个值中的较低者作为下限,并将两者中的较高者作为上限。如果您的使用要求输入值lval并且uval将被视为福音,那么任何调用 wherelval > uval都应该返回 false(因为这是不可能的),您可以删除std::min()andstd::max()扩展。在任何一种情况下,您都可以通过制作外部前端加载器并预先检查 和 的顺序来进一步提高性能lval( uvala) 如果需要绝对排序,则立即返回 false 和lval > uval,或者 (b) 适当地预先确定 lval 和 uval如果需要范围差异,请订购。下面探讨了这两种外包装的示例:

// search for any ar[i] such that (lval <= ar[i] <= uval)
//  assumes ar[] is sorted, and (lval <= uval).
bool inRange_(int lval, int uval, int ar[], size_t n)
{
    if (0 == n)
        return false;

    size_t mid = n/2;
    if (ar[mid] >= lval)
    {
        if (ar[mid] <= uval)
            return true;
        return inRange_(lval, uval, ar, mid);
    }
    return inRange_(lval, uval, ar+mid+1, n-mid-1);
}

// use lval and uval as an hard range of [lval,uval].
//  i.e. short-circuit the impossible case of lower-bound
//  being greater than upper-bound.
bool inRangeAbs(int lval, int uval, int ar[], size_t n)
{
    if (lval > uval)
        return false;
    return inRange_(lval, uval, ar, n);
}

// use lval and uval as un-ordered limits. i.e always use either
// [lval,uval] or [uval,lval], depending on their values.
bool inRange(int lval, int uval, int ar[], size_t n)
{
    return inRange_(std::min(lval,uval), std::max(lval,uval), ar, n);
}

我留下了我认为你想要的那个inRange。为希望覆盖主要和边缘情况而执行的单元测试以及结果输出如下所示。

#include <iostream>
#include <algorithm>
#include <vector>
#include <iomanip>
#include <iterator>

int main(int argc, char *argv[])
{
    int A[] = {5,10,25,30,50,100,200,500,1000,2000};
    size_t ALen = sizeof(A)/sizeof(A[0]);
    srand((unsigned int)time(NULL));

    // inner boundary tests (should all answer true)
    cout << inRange(5, 25, A, ALen) << endl;
    cout << inRange(1800, 2000, A, ALen) << endl;

    // limit tests (should all answer true)
    cout << inRange(0, 5, A, ALen) << endl;
    cout << inRange(2000, 3000, A, ALen) << endl;

    // midrange tests. (should all answer true)
    cout << inRange(26, 31, A, ALen) << endl;
    cout << inRange(99, 201, A, ALen) << endl;
    cout << inRange(6, 10, A, ALen) << endl;
    cout << inRange(501, 1500, A, ALen) << endl;

    // identity tests. (should all answer true)
    cout << inRange(5, 5, A, ALen) << endl;
    cout << inRange(25, 25, A, ALen) << endl;
    cout << inRange(100, 100, A, ALen) << endl;
    cout << inRange(1000, 1000, A, ALen) << endl;

    // test single-element top-and-bottom cases
    cout << inRange(0,5,A,1) << endl;
    cout << inRange(5,5,A,1) << endl;

    // oo-range tests (should all answer false)
    cout << inRange(1, 4, A, ALen) << endl;
    cout << inRange(2001, 2500, A, ALen) << endl;
    cout << inRange(1, 1, A, 0) << endl;

    // performance on LARGE arrays.
    const size_t N = 2000000;
    cout << "Building array of " << N << " random values." << endl;
    std::vector<int> bigv;
    generate_n(back_inserter(bigv), N, rand);

    // sort the array
    cout << "Sorting array of " << N << " random values." << endl;
    std::sort(bigv.begin(), bigv.end());

    cout << "Running " << N << " identity searches..." << endl;
    for (int i=1;i<N; i++)
        if (!inRange(bigv[i-1],bigv[i],&bigv[0],N))
        {
            cout << "Error: could not find value in range [" << bigv[i-1] << ',' << bigv[i] << "]" << endl;
            break;
        };
    cout << "Finished" << endl;

    return 0;
}

输出结果:

1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
Sorting array of 2000000 random values.
Running 2000000 identity searches...
Finished
于 2012-11-08T09:02:38.950 回答
1

如果您假设要对数组进行排序,这实际上非常简单。您可以通过始终查看序列的左侧或右侧来摆脱对数复杂性:

#include <iterator>

template <typename Limit, typename Iterator>
bool inRange(Limit lowerBound, Limit upperBound, Iterator begin, Iterator end) {
  if (begin == end) // no values => no valid values
    return false;
  Iterator mid = begin;
  auto const dist = std::distance(begin,end);
  std::advance(mid,dist/2); // mid might be equal to begin, if dist == 1
  if (lowerBound < *mid && *mid < upperBound)
    return true;
  if (dist == 1) // if mid is invalid and there is only mid, there is no value
    return false;
  if (*mid > upperBound)
    return inRange(lowerBound, upperBound, begin, mid);
  std::advance(mid,1); // we already know mid is invalid
  return inRange(lowerBound, upperBound, mid, end);
}

您可以使用以下方法为普通数组调用它:

inRange(2,25,std::begin(A),std::end(A));
于 2012-11-08T08:04:28.973 回答
0

据我了解,对您的特定问题使用分而治之不会产生优势。但是,至少在您的示例中,输入是排序的;应该可以通过跳过值来改进一点,直到达到下限。

于 2012-11-08T07:52:51.747 回答