假设以下定义(前两个取自http://www.cis.upenn.edu/~bcpierce/sf/Basics.html):
Fixpoint beq_nat (n m : nat) : bool :=
match n with
| O => match m with
| O => true
| S m' => false
end
| S n' => match m with
| O => false
| S m' => beq_nat n' m'
end
end.
Fixpoint ble_nat (n m : nat) : bool :=
match n with
| O => true
| S n' =>
match m with
| O => false
| S m' => ble_nat n' m'
end
end.
Definition blt_nat (n m : nat) : bool :=
if andb (ble_nat n m) (negb (beq_nat n m)) then true else false.
我想证明以下几点:
Lemma blt_nat_flip0 : forall (x y : nat),
blt_nat x y = false -> ble_nat y x = true.
Lemma blt_nat_flip : forall (x y : nat),
blt_nat x y = false -> beq_nat x y = false -> blt_nat y x = true.
我能做的最远的事情就是证明blt_nat_flip
假设blt_nat_flip0
。我花了很多时间,我快到了,但总的来说,它似乎比它应该的要复杂。有人对如何证明这两个引理有更好的想法吗?
到目前为止,这是我的尝试:
Lemma beq_nat_symmetric : forall (x y : nat),
beq_nat x y = beq_nat y x.
Proof.
intros x. induction x.
intros y. simpl. destruct y.
reflexivity. reflexivity.
intros y. simpl. destruct y.
reflexivity.
simpl. apply IHx.
Qed.
Lemma and_negb_false : forall (b1 b2 : bool),
b2 = false -> andb b1 (negb b2) = b1.
Proof.
intros. rewrite -> H. unfold negb. destruct b1.
simpl. reflexivity.
simpl. reflexivity.
Qed.
Lemma blt_nat_flip0 : forall (x y : nat),
blt_nat x y = false -> ble_nat y x = true.
Proof.
intros x.
induction x.
intros. destruct y.
simpl. reflexivity.
simpl. inversion H.
intros. destruct y. simpl. reflexivity.
simpl. rewrite -> IHx. reflexivity.
(* I am giving up for now at this point ... *)
Admitted.
Lemma blt_nat_flip : forall (x y : nat),
blt_nat x y = false -> beq_nat x y = false ->
blt_nat y x = true.
Proof.
intros.
unfold blt_nat.
rewrite -> beq_nat_symmetric. rewrite -> H0.
rewrite -> and_negb_false.
replace (ble_nat y x) with true.
reflexivity.
rewrite -> blt_nat_flip0. reflexivity. apply H. reflexivity.
Qed.