我有一个使用pimpl
成语的界面,但是该界面需要是可重入的。然而,调用线程不需要知道锁定。这是一个由四部分组成的问题和一部分无偿设计的 C++11 示例(包含示例以解决我遇到的几个类似常见问题的问题 re: locking
、和 C++11 pimpl
,rvalue
其中答案的质量有些可疑) .
在标题中,example.hpp:
#ifndef EXAMPLE_HPP
#define EXAMPLE_HPP
#include <memory>
#include <string>
#ifndef BOOST_THREAD_SHARED_MUTEX_HPP
# include <boost/thread/shared_mutex.hpp>
#endif
namespace stackoverflow {
class Example final {
public:
typedef ::boost::shared_mutex shared_mtx_t;
typedef ::boost::shared_lock< shared_mtx_t > shared_lock_t;
typedef ::boost::unique_lock< shared_mtx_t > unique_lock_t;
Example();
Example(const std::string& initial_foo);
~Example();
Example(const Example&) = delete; // Prevent copying
Example& operator=(const Example&) = delete; // Prevent assignment
// Example getter method that supports rvalues
std::string foo() const;
// Example setter method using perfect forwarding & move semantics. Anything
// that's std::string-like will work as a parameter.
template<typename T>
bool foo_set(T&& new_val);
// Begin foo_set() variants required to deal with C types (e.g. char[],
// char*). The rest of the foo_set() methods here are *NOT* required under
// normal circumstances.
// Setup a specialization for const char[] that simply forwards along a
// std::string. This is preferred over having to explicitly instantiate a
// bunch of const char[N] templates or possibly std::decay a char[] to a
// char* (i.e. using a std::string as a container is a Good Thing(tm)).
//
// Also, without this, it is required to explicitly instantiate the required
// variants of const char[N] someplace. For example, in example.cpp:
//
// template bool Example::foo_set<const char(&)[6]>(char const (&)[6]);
// template bool Example::foo_set<const char(&)[7]>(char const (&)[7]);
// template bool Example::foo_set<const char(&)[8]>(char const (&)[8]);
// ...
//
// Eww. Best to just forward to wrap new_val in a std::string and proxy
// along the call to foo_set<std::string>().
template<std::size_t N>
bool foo_set(const char (&new_val)[N]) { return foo_set(std::string(new_val, N)); }
// Inline function overloads to support null terminated char* && const
// char* arguments. If there's a way to reduce this duplication with
// templates, I'm all ears because I wasn't able to generate a templated
// versions that didn't conflict with foo_set<T&&>().
bool foo_set(char* new_val) { return foo_set(std::string(new_val)); }
bool foo_set(const char* new_val) { return foo_set(std::string(new_val)); }
// End of the foo_set() overloads.
// Example getter method for a POD data type
bool bar(const std::size_t len, char* dst) const;
std::size_t bar_capacity() const;
// Example setter that uses a unique lock to access foo()
bool bar_set(const std::size_t len, const char* src);
// Question #1: I can't find any harm in making Impl public because the
// definition is opaque. Making Impl public, however, greatly helps with
// implementing Example, which does have access to Example::Impl's
// interface. This is also preferre, IMO, over using friend.
class Impl;
private:
mutable shared_mtx_t rw_mtx_;
std::unique_ptr<Impl> impl_;
};
} // namespace stackoverflow
#endif // EXAMPLE_HPP
然后在实现中:
#include "example.hpp"
#include <algorithm>
#include <cstring>
#include <utility>
namespace stackoverflow {
class Example;
class Example::Impl;
#if !defined(_MSC_VER) || _MSC_VER > 1600
// Congratulations!, you're using a compiler that isn't broken
// Explicitly instantiate std::string variants
template bool Example::foo_set<std::string>(std::string&& src);
template bool Example::foo_set<std::string&>(std::string& src);
template bool Example::foo_set<const std::string&>(const std::string& src);
// The following isn't required because of the array Example::foo_set()
// specialization, but I'm leaving it here for reference.
//
// template bool Example::foo_set<const char(&)[7]>(char const (&)[7]);
#else
// MSVC workaround: msvc_rage_hate() isn't ever called, but use it to
// instantiate all of the required templates.
namespace {
void msvc_rage_hate() {
Example e;
const std::string a_const_str("a");
std::string a_str("b");
e.foo_set(a_const_str);
e.foo_set(a_str);
e.foo_set("c");
e.foo_set(std::string("d"));
}
} // anon namespace
#endif // _MSC_VER
// Example Private Implementation
class Example::Impl final {
public:
// ctors && obj boilerplate
Impl();
Impl(const std::string& init_foo);
~Impl() = default;
Impl(const Impl&) = delete;
Impl& operator=(const Impl&) = delete;
// Use a template because we don't care which Lockable concept or LockType
// is being used, just so long as a lock is held.
template <typename LockType>
bool bar(LockType& lk, std::size_t len, char* dst) const;
template <typename LockType>
std::size_t bar_capacity(LockType& lk) const;
// bar_set() requires a unique lock
bool bar_set(unique_lock_t& lk, const std::size_t len, const char* src);
template <typename LockType>
std::string foo(LockType& lk) const;
template <typename T>
bool foo_set(unique_lock_t& lk, T&& src);
private:
// Example datatype that supports rvalue references
std::string foo_;
// Example POD datatype that doesn't support rvalue
static const std::size_t bar_capacity_ = 16;
char bar_[bar_capacity_ + 1];
};
// Example delegating ctor
Example::Impl::Impl() : Impl("default foo value") {}
Example::Impl::Impl(const std::string& init_foo) : foo_{init_foo} {
std::memset(bar_, 99 /* ASCII 'c' */, bar_capacity_);
bar_[bar_capacity_] = '\0'; // null padding
}
template <typename LockType>
bool
Example::Impl::bar(LockType& lk, const std::size_t len, char* dst) const {
BOOST_ASSERT(lk.owns_lock());
if (len != bar_capacity(lk))
return false;
std::memcpy(dst, bar_, len);
return true;
}
template <typename LockType>
std::size_t
Example::Impl::bar_capacity(LockType& lk) const {
BOOST_ASSERT(lk.owns_lock());
return Impl::bar_capacity_;
}
bool
Example::Impl::bar_set(unique_lock_t &lk, const std::size_t len, const char* src) {
BOOST_ASSERT(lk.owns_lock());
// Return false if len is bigger than bar_capacity or the values are
// identical
if (len > bar_capacity(lk) || foo(lk) == src)
return false;
// Copy src to bar_, a side effect of updating foo_ if they're different
std::memcpy(bar_, src, std::min(len, bar_capacity(lk)));
foo_set(lk, std::string(src, len));
return true;
}
template <typename LockType>
std::string
Example::Impl::foo(LockType& lk) const {
BOOST_ASSERT(lk.owns_lock());
return foo_;
}
template <typename T>
bool
Example::Impl::foo_set(unique_lock_t &lk, T&& src) {
BOOST_ASSERT(lk.owns_lock());
if (foo_ == src) return false;
foo_ = std::move(src);
return true;
}
// Example Public Interface
Example::Example() : impl_(new Impl{}) {}
Example::Example(const std::string& init_foo) : impl_(new Impl{init_foo}) {}
Example::~Example() = default;
bool
Example::bar(const std::size_t len, char* dst) const {
shared_lock_t lk(rw_mtx_);
return impl_->bar(lk, len , dst);
}
std::size_t
Example::bar_capacity() const {
shared_lock_t lk(rw_mtx_);
return impl_->bar_capacity(lk);
}
bool
Example::bar_set(const std::size_t len, const char* src) {
unique_lock_t lk(rw_mtx_);
return impl_->bar_set(lk, len, src);
}
std::string
Example::foo() const {
shared_lock_t lk(rw_mtx_);
return impl_->foo(lk);
}
template<typename T>
bool
Example::foo_set(T&& src) {
unique_lock_t lk(rw_mtx_);
return impl_->foo_set(lk, std::forward<T>(src));
}
} // namespace stackoverflow
我的问题是:
- 有没有更好的方法来处理私有实现内部的锁定?
- 鉴于定义不透明,公开 Impl 是否有任何实际危害?
- 当使用 clang
-O4
启用Link-Time Optimization时,链接器应该可以绕过std::unique_ptr
. 有人验证过吗? - 有没有办法
foo_set("asdf")
正确调用并拥有示例链接?我们在弄清楚正确的显式模板实例化的用途时遇到了问题const char[6]
。现在我已经设置了一个模板特化,它创建一个std::string
对象并代理对 foo_set() 的调用。考虑到所有因素,这似乎是最好的前进方式,但我想知道如何传递“asdf”和std::decay
结果。
关于锁定策略,出于以下几个原因,我对此产生了明显的偏见:
- 我可以在适当的情况下将互斥锁更改为独占互斥锁
- 通过设计 Impl API 以包含所需的锁,锁定语义有非常强大的编译时保证
- 很难忘记锁定某些东西(当这种情况发生时,一个“简单的 API”错误,一旦 API 被修复,编译器将再次捕获这个错误)
- 由于 RAII 和 Impl 没有对互斥锁的引用,很难将某些东西锁定或创建死锁
- 使用模板无需从唯一锁降级为共享锁
- 由于此锁定策略涵盖的代码比实际需要的多,因此需要显式努力将锁从唯一降级为共享,这可以处理非常常见的场景,其中使用共享锁做出的假设需要在进入唯一锁定时重新测试区域
- 错误修复或 Impl API 更改不需要重新编译整个应用程序,因为 example.hpp 的 API 是外部修复的。
我读过ACE也使用这种类型的锁定策略,但我欢迎ACE用户或其他人对现实世界的批评:将锁定作为接口的必需部分传递。
为了完整起见,这里有一个 example_main.cpp 供人们参考。
#include <sysexits.h>
#include <cassert>
#include <iostream>
#include <memory>
#include <stdexcept>
#include "example.hpp"
int
main(const int /*argc*/, const char** /*argv*/) {
using std::cout;
using std::endl;
using stackoverflow::Example;
{
Example e;
cout << "Example's foo w/ empty ctor arg: " << e.foo() << endl;
}
{
Example e("foo");
cout << "Example's foo w/ ctor arg: " << e.foo() << endl;
}
try {
Example e;
{ // Test assignment from std::string
std::string str("cccccccc");
e.foo_set(str);
assert(e.foo() == "cccccccc"); // Value is the same
assert(str.empty()); // Stole the contents of a_str
}
{ // Test assignment from a const std::string
const std::string const_str("bbbbbbb");
e.foo_set(const_str);
assert(const_str == "bbbbbbb"); // Value is the same
assert(const_str.c_str() != e.foo().c_str()); // Made a copy
}
{
// Test a const char[7] and a temporary std::string
e.foo_set("foobar");
e.foo_set(std::string("ddddd"));
}
{ // Test char[7]
char buf[7] = {"foobar"};
e.foo_set(buf);
assert(e.foo() == "foobar");
}
{ //// And a *char[] & const *char[]
// Use unique_ptr to automatically free buf
std::unique_ptr<char[]> buf(new char[7]);
std::memcpy(buf.get(), "foobar", 6);
buf[6] = '\0';
e.foo_set(buf.get());
const char* const_ptr = buf.get();
e.foo_set(const_ptr);
assert(e.foo() == "foobar");
}
cout << "Example's bar capacity: " << e.bar_capacity() << endl;
const std::size_t len = e.bar_capacity();
std::unique_ptr<char[]> buf(new char[len +1]);
// Copy bar in to buf
if (!e.bar(len, buf.get()))
throw std::runtime_error("Unable to get bar");
buf[len] = '\0'; // Null terminate the C string
cout << endl << "foo and bar (a.k.a.) have different values:" << endl;
cout << "Example's foo value: " << e.foo() << endl;
cout << "Example's bar value: " << buf.get() << endl;
// Set bar, which has a side effect of calling foo_set()
buf[0] = 'c'; buf[1] = buf[2] = '+'; buf[3] = '\0';
if (!e.bar_set(sizeof("c++") - 1, buf.get()))
throw std::runtime_error("Unable to set bar");
cout << endl << "foo and bar now have identical values but only one lock was acquired when setting:" << endl;
cout << "Example's foo value: " << e.foo() << endl;
cout << "Example's bar value: " << buf.get() << endl;
} catch (...) {
return EX_SOFTWARE;
}
return EX_OK;
}
并构建使用说明C++11
和libc++
:
clang++ -O4 -std=c++11 -stdlib=libc++ -I/path/to/boost/include -o example.cpp.o -c example.cpp
clang++ -O4 -std=c++11 -stdlib=libc++ -I/path/to/boost/include -o example_main.cpp.o -c example_main.cpp
clang++ -O4 -stdlib=libc++ -o example example.cpp.o example_main.cpp.o /path/to/boost/lib/libboost_exception-mt.dylib /path/to/boost/lib/libboost_system-mt.dylib /path/to/boost/lib/libboost_thread-mt.dylib
foo_set()
作为一个小小的奖励,我更新了这个例子,在方法中使用右值引用包含完美转发。虽然并不完美,但获得正确的模板实例化所需的时间比我预期的要长,这是链接时的一个问题。这还包括 C 基本类型的适当重载,包括:char*
、const char*
、char[N]
和const char[N]
.