以下是我所知道的在马尔可夫链中计算转换并使用它来填充转换矩阵的最基本方法:
def increment_counts_in_matrix_from_chain(markov_chain, transition_counts_matrix):
for i in xrange(1, len(markov_chain)):
old_state = markov_chain[i - 1]
new_state = markov_chain[i]
transition_counts_matrix[old_state, new_state] += 1
我试过用 3 种不同的方式加速它:
1)使用基于此Matlab代码的稀疏矩阵单线:
transition_matrix = full(sparse(markov_chain(1:end-1), markov_chain(2:end), 1))
在 Numpy/SciPy 中,如下所示:
def get_sparse_counts_matrix(markov_chain, number_of_states):
return coo_matrix(([1]*(len(markov_chain) - 1), (markov_chain[0:-1], markov_chain[1:])), shape=(number_of_states, number_of_states))
而且我尝试了更多的 Python 调整,比如使用 zip():
for old_state, new_state in zip(markov_chain[0:-1], markov_chain[1:]):
transition_counts_matrix[old_state, new_state] += 1
和队列:
old_and_new_states_holder = Queue(maxsize=2)
old_and_new_states_holder.put(markov_chain[0])
for new_state in markov_chain[1:]:
old_and_new_states_holder.put(new_state)
old_state = old_and_new_states_holder.get()
transition_counts_matrix[old_state, new_state] += 1
但是这三种方法都没有加快速度。事实上,除了 zip() 解决方案之外的所有解决方案都至少比我原来的解决方案慢 10 倍。
还有其他值得研究的解决方案吗?
从大量链构建转换矩阵的修改解决方案
上述问题的最佳答案具体是 DSM。但是,对于任何想要根据数百万个马尔可夫链的列表填充转换矩阵的人来说,最快的方法是:
def fast_increment_transition_counts_from_chain(markov_chain, transition_counts_matrix):
flat_coords = numpy.ravel_multi_index((markov_chain[:-1], markov_chain[1:]), transition_counts_matrix.shape)
transition_counts_matrix.flat += numpy.bincount(flat_coords, minlength=transition_counts_matrix.size)
def get_fake_transitions(markov_chains):
fake_transitions = []
for i in xrange(1,len(markov_chains)):
old_chain = markov_chains[i - 1]
new_chain = markov_chains[i]
end_of_old = old_chain[-1]
beginning_of_new = new_chain[0]
fake_transitions.append((end_of_old, beginning_of_new))
return fake_transitions
def decrement_fake_transitions(fake_transitions, counts_matrix):
for old_state, new_state in fake_transitions:
counts_matrix[old_state, new_state] -= 1
def fast_get_transition_counts_matrix(markov_chains, number_of_states):
"""50% faster than original, but must store 2 additional slice copies of all markov chains in memory at once.
You might need to break up the chains into manageable chunks that don't exceed your memory.
"""
transition_counts_matrix = numpy.zeros([number_of_states, number_of_states])
fake_transitions = get_fake_transitions(markov_chains)
markov_chains = list(itertools.chain(*markov_chains))
fast_increment_transition_counts_from_chain(markov_chains, transition_counts_matrix)
decrement_fake_transitions(fake_transitions, transition_counts_matrix)
return transition_counts_matrix