是否可以使用 NVIDIA 的 nvcc 编译器编译 .cl 文件?我正在尝试设置 Visual Studio 2010 在 CUDA 平台下编写 Opencl 代码。但是当我选择 CUDA C/C++ Compiler 来编译和构建 .cl 文件时,它给了我类似 nvcc 不存在的错误。问题是什么?
问问题
3073 次
1 回答
4
您应该可以nvcc
用来编译 OpenCL 代码。通常,我建议.c
对符合 C 的代码和.cpp
符合 C++ 的代码 (*) 使用文件扩展名,但是nvcc
具有文件扩展名覆盖选项 ( -x ...
),以便我们可以修改行为。这是一个使用 CUDA 8.0.61、RHEL 7、Tesla K20x 的工作示例:
$ cat t4.cpp
#include <CL/opencl.h>
#include <stdint.h>
#include <stdio.h>
#include <inttypes.h>
#include <stdlib.h>
const char source[] =
"__kernel void test_rotate(__global ulong *d_count, ulong loops, ulong patt)"
"{"
" ulong n = patt;"
" for (ulong i = 0; i<loops; i++)"
" n &= (107 << (patt+(i%7)));"
" d_count[0] = n + loops;"
"}"
;
int main(int argc, char *argv[])
{
cl_platform_id platform;
cl_device_id device;
cl_context context;
cl_command_queue queue1, queue2;
cl_program program;
cl_mem mem1, mem2;
cl_kernel kernel;
bool two_kernels = false;
unsigned long long loops = 1000;
if (argc > 1) loops *= atoi(argv[1]);
if (argc > 2) two_kernels = true;
if (two_kernels) printf("running two kernels\n");
else printf("running one kernel\n");
printf("running %lu loops\n", loops);
unsigned long long pattern = 1;
clGetPlatformIDs(1, &platform, NULL);
clGetDeviceIDs(platform, CL_DEVICE_TYPE_ALL, 1, &device, NULL);
context = clCreateContext(NULL, 1, &device, NULL, NULL, NULL);
queue1 = clCreateCommandQueue(context, device, CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE, NULL);
queue2 = clCreateCommandQueue(context, device, CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE, NULL);
const char *sources[1] = {source};
program = clCreateProgramWithSource(context, 1, sources, NULL, NULL);
clBuildProgram(program, 1, &device, NULL, NULL, NULL);
mem1 = clCreateBuffer(context, CL_MEM_READ_WRITE, 1*sizeof(cl_ulong), NULL, NULL);
mem2 = clCreateBuffer(context, CL_MEM_READ_WRITE, 1*sizeof(cl_ulong), NULL, NULL);
kernel = clCreateKernel(program, "test_rotate", NULL);
const size_t work_size[1] = {1};
clSetKernelArg(kernel, 0, sizeof(mem1), &mem1);
clSetKernelArg(kernel, 1, sizeof(loops), &loops);
clSetKernelArg(kernel, 2, sizeof(pattern), &pattern);
clEnqueueNDRangeKernel(queue1, kernel, 1, NULL, work_size, work_size, 0, NULL, NULL);
if (two_kernels){
clSetKernelArg(kernel, 0, sizeof(mem2), &mem2);
clSetKernelArg(kernel, 1, sizeof(loops), &loops);
clSetKernelArg(kernel, 2, sizeof(pattern), &pattern);
clEnqueueNDRangeKernel(queue2, kernel, 1, NULL, work_size, work_size, 0, NULL, NULL);
}
cl_ulong *buf1 = (cl_ulong *)clEnqueueMapBuffer(queue1, mem1, true, CL_MAP_READ, 0, 1*sizeof(cl_ulong), 0, NULL, NULL, NULL);
cl_ulong *buf2 = (cl_ulong *)clEnqueueMapBuffer(queue2, mem2, true, CL_MAP_READ, 0, 1*sizeof(cl_ulong), 0, NULL, NULL, NULL);
printf("result1: %lu\n", buf1[0]);
printf("result2: %lu\n", buf2[0]);
clEnqueueUnmapMemObject(queue1, mem1, buf1, 0, NULL, NULL);
clEnqueueUnmapMemObject(queue2, mem2, buf2, 0, NULL, NULL);
return 0;
}
$ nvcc -arch=sm_35 -o t4 t4.cpp -lOpenCL
$ ./t4
running one kernel
running 1000 loops
result1: 1000
result2: 0
$ cp t4.cpp t4.cl
$ nvcc -arch=sm_35 -x cu -o t4 t4.cl -lOpenCL
$ ./t4
running one kernel
running 1000 loops
result1: 1000
result2: 0
$
请注意,这里的代码没有做任何明智或重要的事情,所以我宁愿避免提问。它仅用于演示 C++ 兼容 OpenCL 代码的编译。
(*)(因为这些文件也可以很容易地被普通的主机编译器处理,例如 gnu 编译器,带有适当的包含和链接选项的开关。)
于 2017-04-08T18:34:57.043 回答