1

我正在寻找使用A* Algorithm. 我在网上找到了这个项目。请查看文件 -proj1EightPuzzle. proj1 包含程序(main()函数)的入口点,EightPuzzle 描述了拼图的特定状态。每个状态都是 8 谜题的一个对象。
我觉得逻辑上没有错。但是对于我尝试过的这两个输入,它会永远循环:{8,2,7,5,1,6,3,0,4}{3,1,6,8,4,5,7,2,0}。它们都是有效的输入状态。代码有什么问题?


笔记

  • 为了更好地查看代码,请在 Notepad++ 或其他文本编辑器(具有识别 java 源文件的能力)中复制代码,因为代码中有很多注释。
  • 由于 A* 需要启发式,他们提供了使用曼哈顿距离的选项和计算错放瓷砖数量的启发式。并且为了确保首先执行最佳启发式,他们实施了一个PriorityQueue. 该compareTo() 功能在EightPuzzle类中实现。
  • 可以通过更改类函数中p1d的值来更改程序的输入。main()proj1
  • 我告诉我上面的两个输入存在解决方案的原因是因为这里的小程序解决了它们。请确保从小程序中的选项中选择 8-puzzle。

    EDIT1
    我给了这个输入{0,5,7,6,8,1,2,4,3}。它花了大约10 seconds并给出了26步的结果。但是小程序给出了24 movesin 0.0001 secondswith的结果A*

    EDIT2
    在调试时,我注意到随着节点的扩展,新节点在一段时间后都具有启发式 - f_nas 11or 12。他们似乎永远不会减少。所以过了一段时间后,所有的州PriorityQueue(openset)有 11 或 12 的启发式。所以没有太多可供选择的,要扩展到哪个节点。最低是11,最高是12。这正常吗?

    EDIT3
    这是发生无限循环的片段(在proj1-astar()中)。openset是包含未扩展节点的 PriorityQueue,而closedset是包含扩展节点的 LinkedList。

而(openset.size()> 0){

                    EightPuzzle x = openset.peek();


                    if(x.mapEquals(goal))
                    {

                             Stack<EightPuzzle> toDisplay = reconstruct(x);
                             System.out.println("Printing solution... ");
                             System.out.println(start.toString());
                             print(toDisplay);
                             return;
                             
                    }          
                    closedset.add(openset.poll());
                    LinkedList <EightPuzzle> neighbor = x.getChildren();              
                    while(neighbor.size() > 0)
                    {
                            EightPuzzle y = neighbor.removeFirst();
                            if(closedset.contains(y)){
                                    continue;
                            }          
                            if(!closedset.contains(y)){
                                    openset.add(y);
                            }              
                    }
               
            }




EDIT4

我得到了这个无限循环的原因。看我的回答。但是执行大约需要25-30秒,这是相当长的时间。A* 应该比这快得多。小程序在0.003 秒内完成此操作。我将奖励提高性能的赏金。


为了快速参考,我粘贴了没有注释的两个类:

八拼图


 import java.util.*;
    
    public class EightPuzzle implements Comparable <Object> {
           
           
            int[] puzzle = new int[9];
            int h_n= 0;
            int hueristic_type = 0;
            int g_n = 0;
            int f_n = 0;
            EightPuzzle parent = null;
    
           
            public EightPuzzle(int[] p, int h_type, int cost)
            {
                    this.puzzle = p;
                    this.hueristic_type = h_type;
                    this.h_n = (h_type == 1) ?  h1(p) : h2(p);
                    this.g_n = cost;
                    this.f_n = h_n + g_n;
            }
            public int getF_n()
            {
                    return f_n;
            }
            public void setParent(EightPuzzle input)
            {
                    this.parent = input;
            }
            public EightPuzzle getParent()
            {
                    return this.parent;
            }
    
            public int inversions()
            {
                    /*
                     * Definition: For any other configuration besides the goal,
                     * whenever a tile with a greater number on it precedes a
                     * tile with a smaller number, the two tiles are said to be inverted
                     */
                    int inversion = 0;
                    for(int i = 0; i < this.puzzle.length; i++ )
                    {
                            for(int j = 0; j < i; j++)
                            {
                                    if(this.puzzle[i] != 0 && this.puzzle[j] != 0)
                                    {
                                    if(this.puzzle[i] < this.puzzle[j])
                                            inversion++;
                                    }
                            }
    
                    }
                    return inversion;
                   
            }
            public int h1(int[] list)
            // h1 = the number of misplaced tiles
            {
                    int gn = 0;
                    for(int i = 0; i < list.length; i++)
                    {
                            if(list[i] != i && list[i] != 0)
                                    gn++;
                    }
                    return gn;
            }
            public LinkedList<EightPuzzle> getChildren()
            {
                    LinkedList<EightPuzzle> children = new LinkedList<EightPuzzle>();
                    int loc = 0;
            int temparray[] = new int[this.puzzle.length];
            EightPuzzle rightP, upP, downP, leftP;
                    while(this.puzzle[loc] != 0)
                    {
                            loc++;
                    }
                    if(loc % 3 == 0){
                            temparray = this.puzzle.clone();
                            temparray[loc] = temparray[loc + 1];
                            temparray[loc + 1] = 0;
                            rightP = new EightPuzzle(temparray, this.hueristic_type, this.g_n + 1);
                            rightP.setParent(this);
                            children.add(rightP);
    
                    }else if(loc % 3 == 1){
                    //add one child swaps with right
                            temparray = this.puzzle.clone();
                            temparray[loc] = temparray[loc + 1];
                            temparray[loc + 1] = 0;
                           
                            rightP = new EightPuzzle(temparray, this.hueristic_type, this.g_n + 1);
                            rightP.setParent(this);
                            children.add(rightP);
                            //add one child swaps with left
                            temparray = this.puzzle.clone();
                            temparray[loc] = temparray[loc - 1];
                            temparray[loc - 1] = 0;
                           
                            leftP = new EightPuzzle(temparray, this.hueristic_type, this.g_n + 1);
                            leftP.setParent(this);
                            children.add(leftP);
                    }else if(loc % 3 == 2){
                    // add one child swaps with left
                            temparray = this.puzzle.clone();
                            temparray[loc] = temparray[loc - 1];
                            temparray[loc - 1] = 0;
                           
                            leftP = new EightPuzzle(temparray, this.hueristic_type, this.g_n + 1);
                            leftP.setParent(this);
                            children.add(leftP);
                    }              
                   
                    if(loc / 3 == 0){
                    //add one child swaps with lower
                            temparray = this.puzzle.clone();
                            temparray[loc] = temparray[loc + 3];
                            temparray[loc + 3] = 0;
                           
                            downP = new EightPuzzle(temparray, this.hueristic_type, this.g_n + 1);
    
                            downP.setParent(this);
    
                            children.add(downP);
                   
                           
                    }else if(loc / 3 == 1 ){
                            //add one child, swap with upper
                            temparray = this.puzzle.clone();
                            temparray[loc] = temparray[loc - 3];
                            temparray[loc - 3] = 0;
                           
                            upP = new EightPuzzle(temparray, this.hueristic_type, this.g_n + 1);
                            upP.setParent(this);
    
                            children.add(upP);
                            //add one child, swap with lower
                            temparray = this.puzzle.clone();
                            temparray[loc] = temparray[loc + 3];
                            temparray[loc + 3] = 0;
                           
                            downP = new EightPuzzle(temparray, this.hueristic_type, this.g_n + 1);
                            downP.setParent(this);
    
                            children.add(downP);
                    }else if (loc / 3 == 2 ){
                            //add one child, swap with upper
                            temparray = this.puzzle.clone();
                            temparray[loc] = temparray[loc - 3];
                            temparray[loc - 3] = 0;
                           
                            upP = new EightPuzzle(temparray, this.hueristic_type, this.g_n + 1);
                            upP.setParent(this);
    
                            children.add(upP);
                    }
    
                    return children;
            }
            public int h2(int[] list)
            // h2 = the sum of the distances of the tiles from their goal positions
            // for each item find its goal position
            // calculate how many positions it needs to move to get into that position
            {
                    int gn = 0;
                    int row = 0;
                    int col = 0;
                    for(int i = 0; i < list.length; i++)
                    {
                            if(list[i] != 0)
                            {
                                    row = list[i] / 3;
                                    col = list[i] % 3;
                                    row = Math.abs(row - (i / 3));
                                    col = Math.abs(col - (i % 3));
                                    gn += row;
                                    gn += col;
                            }
                           
                    }
                    return gn;
            }
    
            public String toString()
            {
                    String x = "";
                    for(int i = 0; i < this.puzzle.length; i++){
                            x += puzzle[i] + " ";
                            if((i + 1) % 3 == 0)
                                    x += "\n";
                    }
                    return x;
            }
            public int compareTo(Object input) {
                   
                   
                    if (this.f_n < ((EightPuzzle) input).getF_n())
                            return -1;
                    else if (this.f_n > ((EightPuzzle) input).getF_n())
                            return 1;
                    return 0;
            }
           
            public boolean equals(EightPuzzle test){
                    if(this.f_n != test.getF_n())
                            return false;
                    for(int i = 0 ; i < this.puzzle.length; i++)
                    {
                            if(this.puzzle[i] != test.puzzle[i])
                                    return false;
                    }
                    return true;
            }
            public boolean mapEquals(EightPuzzle test){
                    for(int i = 0 ; i < this.puzzle.length; i++)
                    {
                            if(this.puzzle[i] != test.puzzle[i])
                                    return false;
                    }
                    return true;
            }
    
    }

项目1

import java.util.*;

public class proj1 {

        /**
         * @param args
         */
       
        public static void main(String[] args) {
               
               
                int[] p1d = {1, 4, 2, 3, 0, 5, 6, 7, 8};
                int hueristic = 2;
                EightPuzzle start = new EightPuzzle(p1d, hueristic, 0);
                int[] win = { 0, 1, 2,
                                          3, 4, 5,
                                          6, 7, 8};
                EightPuzzle goal = new EightPuzzle(win, hueristic, 0);
               
                astar(start, goal);

               

        }
       
        public static void astar(EightPuzzle start, EightPuzzle goal)
        {
                if(start.inversions() % 2 == 1)
                {
                        System.out.println("Unsolvable");
                        return;
                }
//              function A*(start,goal)
//           closedset := the empty set                 // The set of nodes already evaluated.
                LinkedList<EightPuzzle> closedset = new LinkedList<EightPuzzle>();
//           openset := set containing the initial node // The set of tentative nodes to be evaluated. priority queue
                PriorityQueue<EightPuzzle> openset = new PriorityQueue<EightPuzzle>();

                openset.add(start);
               

                while(openset.size() > 0){
//               x := the node in openset having the lowest f_score[] value
                        EightPuzzle x = openset.peek();

//               if x = goal
                        if(x.mapEquals(goal))
                        {
//                   return reconstruct_path(came_from, came_from[goal])
                                 Stack<EightPuzzle> toDisplay = reconstruct(x);
                                 System.out.println("Printing solution... ");
                                 System.out.println(start.toString());
                                 print(toDisplay);
                                 return;
                                 
                        }
//               remove x from openset
//               add x to closedset
                        closedset.add(openset.poll());
                        LinkedList <EightPuzzle> neighbor = x.getChildren();
//               foreach y in neighbor_nodes(x)                
                        while(neighbor.size() > 0)
                        {
                                EightPuzzle y = neighbor.removeFirst();
//                   if y in closedset
                                if(closedset.contains(y)){
//                       continue
                                        continue;
                                }
//                   tentative_g_score := g_score[x] + dist_between(x,y)
//      
//                   if y not in openset
                                if(!closedset.contains(y)){
//                       add y to openset
                                        openset.add(y);
//                      
                                }
//                 
                        }
//               
                }
        }

        public static void print(Stack<EightPuzzle> x)
        {
                while(!x.isEmpty())
                {
                        EightPuzzle temp = x.pop();
                        System.out.println(temp.toString());
                }
        }

        public static Stack<EightPuzzle> reconstruct(EightPuzzle winner)
        {
                Stack<EightPuzzle> correctOutput = new Stack<EightPuzzle>();
               
                while(winner.getParent() != null)
                {
                correctOutput.add(winner);
                winner = winner.getParent();
                }

                return correctOutput;
        }
       
        }
   
4

4 回答 4

6

这是一个建议。我的计时器为您的示例报告 0 毫秒。在这里给出的更难的谜题需要 31 步才能完成,需要 96 毫秒。

AHashSet对于封闭集来说比你的链表更有意义。它具有 O(1) 时间插入和成员资格测试,其中您的链表需要的时间与列表的长度成正比,而列表的长度在不断增长。

您正在使用额外的数据结构和代码,使您的程序比所需的更复杂和更慢。多想,少写代码,研究别人的好代码来克服这个问题。我的并不完美(从来没有代码是完美的),但它是一个开始的地方。

我使用从每个图块的当前位置到其目标的曼哈顿距离的最大值作为启发式方法。启发式的选择不会影响解决方案中的步骤数,但极大地影响运行时间。例如,h=0 将产生蛮力广度优先搜索。

请注意,要使 A* 提供最佳解决方案,启发式算法永远不能高估达到目标的实际最小步数。如果这样做,则解决方案可能不是最短的解决方案。我不肯定“反转”启发式具有此属性。

package eightpuzzle;

import java.util.Arrays;
import java.util.Comparator;
import java.util.HashSet;
import java.util.PriorityQueue;

public class EightPuzzle {

    // Tiles for successfully completed puzzle.
    static final byte [] goalTiles = { 0, 1, 2, 3, 4, 5, 6, 7, 8 };

    // A* priority queue.
    final PriorityQueue <State> queue = new PriorityQueue<State>(100, new Comparator<State>() {
        @Override
        public int compare(State a, State b) { 
            return a.priority() - b.priority();
        }
    });

    // The closed state set.
    final HashSet <State> closed = new HashSet <State>();

    // State of the puzzle including its priority and chain to start state.
    class State {
        final byte [] tiles;    // Tiles left to right, top to bottom.
        final int spaceIndex;   // Index of space (zero) in tiles  
        final int g;            // Number of moves from start.
        final int h;            // Heuristic value (difference from goal)
        final State prev;       // Previous state in solution chain.

        // A* priority function (often called F in books).
        int priority() {
            return g + h;
        }

        // Build a start state.
        State(byte [] initial) {
            tiles = initial;
            spaceIndex = index(tiles, 0);
            g = 0;
            h = heuristic(tiles);
            prev = null;
        }

        // Build a successor to prev by sliding tile from given index.
        State(State prev, int slideFromIndex) {
            tiles = Arrays.copyOf(prev.tiles, prev.tiles.length);
            tiles[prev.spaceIndex] = tiles[slideFromIndex];
            tiles[slideFromIndex] = 0;
            spaceIndex = slideFromIndex;
            g = prev.g + 1;
            h = heuristic(tiles);
            this.prev = prev;
        }

        // Return true iif this is the goal state.
        boolean isGoal() {
            return Arrays.equals(tiles, goalTiles);
        }

        // Successor states due to south, north, west, and east moves.
        State moveS() { return spaceIndex > 2 ? new State(this, spaceIndex - 3) : null; }       
        State moveN() { return spaceIndex < 6 ? new State(this, spaceIndex + 3) : null; }       
        State moveE() { return spaceIndex % 3 > 0 ? new State(this, spaceIndex - 1) : null; }       
        State moveW() { return spaceIndex % 3 < 2 ? new State(this, spaceIndex + 1) : null; }

        // Print this state.
        void print() {
            System.out.println("p = " + priority() + " = g+h = " + g + "+" + h);
            for (int i = 0; i < 9; i += 3)
                System.out.println(tiles[i] + " " + tiles[i+1] + " " + tiles[i+2]);
        }

        // Print the solution chain with start state first.
        void printAll() {
            if (prev != null) prev.printAll();
            System.out.println();
            print();
        }

        @Override
        public boolean equals(Object obj) {
            if (obj instanceof State) {
                State other = (State)obj;
                return Arrays.equals(tiles, other.tiles);
            }
            return false;
        }

        @Override
        public int hashCode() {
            return Arrays.hashCode(tiles);
        }
    }

    // Add a valid (non-null and not closed) successor to the A* queue.
    void addSuccessor(State successor) {
        if (successor != null && !closed.contains(successor)) 
            queue.add(successor);
    }

    // Run the solver.
    void solve(byte [] initial) {

        queue.clear();
        closed.clear();

        // Click the stopwatch.
        long start = System.currentTimeMillis();

        // Add initial state to queue.
        queue.add(new State(initial));

        while (!queue.isEmpty()) {

            // Get the lowest priority state.
            State state = queue.poll();

            // If it's the goal, we're done.
            if (state.isGoal()) {
                long elapsed = System.currentTimeMillis() - start;
                state.printAll();
                System.out.println("elapsed (ms) = " + elapsed);
                return;
            }

            // Make sure we don't revisit this state.
            closed.add(state);

            // Add successors to the queue.
            addSuccessor(state.moveS());
            addSuccessor(state.moveN());
            addSuccessor(state.moveW());
            addSuccessor(state.moveE());
        }
    }

    // Return the index of val in given byte array or -1 if none found.
    static int index(byte [] a, int val) {
        for (int i = 0; i < a.length; i++)
            if (a[i] == val) return i;
        return -1;
    }

    // Return the Manhatten distance between tiles with indices a and b.
    static int manhattanDistance(int a, int b) {
        return Math.abs(a / 3 - b / 3) + Math.abs(a % 3 - b % 3);
    }

    // For our A* heuristic, we just use max of Manhatten distances of all tiles.
    static int heuristic(byte [] tiles) {
        int h = 0;
        for (int i = 0; i < tiles.length; i++)
            if (tiles[i] != 0)
                h = Math.max(h, manhattanDistance(i, tiles[i]));
        return h;
    }

    public static void main(String[] args) {

        // This is a harder puzzle than the SO example
        byte [] initial = { 8, 0, 6, 5, 4, 7, 2, 3, 1 };

        // This is taken from the SO example.
        //byte [] initial = { 1, 4, 2, 3, 0, 5, 6, 7, 8 };

        new EightPuzzle().solve(initial);
    }
}
于 2012-10-31T04:14:39.763 回答
1

发现了问题。这是用于检查节点是否存在于封闭集中的条件

if(!closedset.contains(y))

一个linkedlist(closeset)通过调用类的equals()来执行contains(),在这个例子中是EightPuzzleEightPuzzle中的equals函数定义如下

public boolean equals(EightPuzzle test){

                if(this.f_n != ((EightPuzzle)test).getF_n())
                       return false;
            //System.out.println("in equals");
                for(int i = 0 ; i < this.puzzle.length; i++)
                {
                        if(this.puzzle[i] != ((EightPuzzle)test).puzzle[i])
                                return false;
                }
                return true;
        }

但是这个函数从来没有被调用过,因为如果你想覆盖Object类的equals()正确的签名应该是

 public boolean equals(Object test). 

还需要一个更改- 注释 equals() 的前两行

我得到了答案。但是对于某些输入,代码仍然需要25-30秒。A* 不会出现这种情况。小程序在0.003 秒内解决了这个难题。如果有人知道如何提高性能,请告诉我。
我会把赏金奖励给那个人。

于 2012-10-27T17:27:53.967 回答
0

从另一个论坛得到优化的答案。

分别更改openset.size()neightbor.size()

openset.isEmpty()neightbor.isEmpty()

size()遍历整个列表,随着列表变大,它需要越来越多的时间。并且还更改 EightPuzzle x = openset.peek();

EightPuzzle x = openset.poll();并重用 x,而不是调用peek()poll()


现在它在内部处理1 second

于 2012-10-30T04:38:08.303 回答
0

我相信您的代码没有任何问题,但是请注意,并非所有 8 谜题都可以解决!所以首先检查“{8,2,7,5,1,6,3,0,4} 和 {3,1,6,8,4,5,7,2,0}”是否是可解的 8-puzzles .

于 2016-02-18T05:46:03.317 回答