我正在尝试编写一个程序,该程序采用大型数据框并用这些值的累积频率(按升序排序)替换每一列值。例如,如果值的列是:5、8、3、5、4、3、8、5、5、1。那么相对频率和累积频率是:
- 1: rel_freq=0.1, cum_freq = 0.1
- 3: rel_freq=0.2, cum_freq = 0.3
- 4: rel_freq=0.1, cum_freq = 0.4
- 5: rel_freq=0.4, cum_freq = 0.8
- 8: rel_freq=0.2, cum_freq = 1.0
那么原来的列变成:0.8, 1.0, 0.3, 0.8, 0.4, 0.3, 1.0, 0.8, 0.8, 0.1
以下代码正确执行此操作,但可能由于嵌套循环,它的伸缩性很差。知道如何更有效地执行此任务吗?
mydata = read.table(.....)
totalcols = ncol(mydata)
totalrows = nrow(mydata)
for (i in 1:totalcols) {
freqtable = data.frame(table(mydata[,i])/totalrows) # create freq table
freqtable$CumSum = cumsum(freqtable$Freq) # calc cumulative freq
hashtable = new.env(hash=TRUE)
nrows = nrow(freqtable)
# store cum freq in hash
for (x in 1:nrows) {
dummy = toString(freqtable$Var1[x])
hashtable[[dummy]] = freqtable$CumSum[x]
}
# replace original data with cum freq
for (j in 1:totalrows) {
dummy = toString(mydata[j,i])
mydata[j,i] = hashtable[[dummy]]
}
}