考虑这个与 monad 同构的(Bool ->)
monad:
data Pair a = P a a
instance Functor Pair where
fmap f (P x y) = P (f x) (f y)
instance Monad Pair where
return x = P x x
P a b >>= f = P x y
where P x _ = f a
P _ y = f b
并用Maybe
monad 组合它:
newtype Bad a = B (Maybe (Pair a))
我声称这Bad
不能是一个单子。
部分证明:
只有一种方法可以定义fmap
满足fmap id = id
:
instance Functor Bad where
fmap f (B x) = B $ fmap (fmap f) x
回忆一下单子定律:
(1) join (return x) = x
(2) join (fmap return x) = x
(3) join (join x) = join (fmap join x)
对于 的定义return x
,我们有两种选择:B Nothing
或B (Just (P x x))
。很明显,为了有任何x
从(1)和(2)返回的希望,我们不能扔掉x
,所以我们必须选择第二个选项。
return' :: a -> Bad a
return' x = B (Just (P x x))
那叶子join
。由于只有几个可能的输入,我们可以为每个输入一个案例:
join :: Bad (Bad a) -> Bad a
(A) join (B Nothing) = ???
(B) join (B (Just (P (B Nothing) (B Nothing)))) = ???
(C) join (B (Just (P (B (Just (P x1 x2))) (B Nothing)))) = ???
(D) join (B (Just (P (B Nothing) (B (Just (P x1 x2)))))) = ???
(E) join (B (Just (P (B (Just (P x1 x2))) (B (Just (P x3 x4)))))) = ???
由于输出具有类型Bad a
,因此唯一的选项是B Nothing
或B (Just (P y1 y2))
where y1
,y2
必须从中选择x1 ... x4
。
在情况 (A) 和 (B) 中,我们没有 type 的值a
,因此在这两种情况下我们都被迫返回B Nothing
。
情况 (E) 由 (1) 和 (2) 单子定律确定:
-- apply (1) to (B (Just (P y1 y2)))
join (return' (B (Just (P y1 y2))))
= -- using our definition of return'
join (B (Just (P (B (Just (P y1 y2))) (B (Just (P y1 y2))))))
= -- from (1) this should equal
B (Just (P y1 y2))
为了B (Just (P y1 y2))
在情况 (E) 中返回,这意味着我们必须从 or 中选择y1
一个x1
,x3
并且y2
从x2
or中选择一个x4
。
-- apply (2) to (B (Just (P y1 y2)))
join (fmap return' (B (Just (P y1 y2))))
= -- def of fmap
join (B (Just (P (return y1) (return y2))))
= -- def of return
join (B (Just (P (B (Just (P y1 y1))) (B (Just (P y2 y2))))))
= -- from (2) this should equal
B (Just (P y1 y2))
同样,这表示我们必须从 or 中选择y1
一个x1
,x2
并且y2
从x3
or中选择一个x4
。结合两者,我们确定 (E) 的右手边一定是B (Just (P x1 x4))
。
到目前为止一切都很好,但是当您尝试填写 (C) 和 (D) 的右侧时,问题就来了。
每个有 5 种可能的右手边,并且没有一种组合有效。我对此还没有很好的论据,但我确实有一个程序可以详尽地测试所有组合:
{-# LANGUAGE ImpredicativeTypes, ScopedTypeVariables #-}
import Control.Monad (guard)
data Pair a = P a a
deriving (Eq, Show)
instance Functor Pair where
fmap f (P x y) = P (f x) (f y)
instance Monad Pair where
return x = P x x
P a b >>= f = P x y
where P x _ = f a
P _ y = f b
newtype Bad a = B (Maybe (Pair a))
deriving (Eq, Show)
instance Functor Bad where
fmap f (B x) = B $ fmap (fmap f) x
-- The only definition that could possibly work.
unit :: a -> Bad a
unit x = B (Just (P x x))
-- Number of possible definitions of join for this type. If this equals zero, no monad for you!
joins :: Integer
joins = sum $ do
-- Try all possible ways of handling cases 3 and 4 in the definition of join below.
let ways = [ \_ _ -> B Nothing
, \a b -> B (Just (P a a))
, \a b -> B (Just (P a b))
, \a b -> B (Just (P b a))
, \a b -> B (Just (P b b)) ] :: [forall a. a -> a -> Bad a]
c3 :: forall a. a -> a -> Bad a <- ways
c4 :: forall a. a -> a -> Bad a <- ways
let join :: forall a. Bad (Bad a) -> Bad a
join (B Nothing) = B Nothing -- no choice
join (B (Just (P (B Nothing) (B Nothing)))) = B Nothing -- again, no choice
join (B (Just (P (B (Just (P x1 x2))) (B Nothing)))) = c3 x1 x2
join (B (Just (P (B Nothing) (B (Just (P x3 x4)))))) = c4 x3 x4
join (B (Just (P (B (Just (P x1 x2))) (B (Just (P x3 x4)))))) = B (Just (P x1 x4)) -- derived from monad laws
-- We've already learnt all we can from these two, but I decided to leave them in anyway.
guard $ all (\x -> join (unit x) == x) bad1
guard $ all (\x -> join (fmap unit x) == x) bad1
-- This is the one that matters
guard $ all (\x -> join (join x) == join (fmap join x)) bad3
return 1
main = putStrLn $ show joins ++ " combinations work."
-- Functions for making all the different forms of Bad values containing distinct Ints.
bad1 :: [Bad Int]
bad1 = map fst (bad1' 1)
bad3 :: [Bad (Bad (Bad Int))]
bad3 = map fst (bad3' 1)
bad1' :: Int -> [(Bad Int, Int)]
bad1' n = [(B Nothing, n), (B (Just (P n (n+1))), n+2)]
bad2' :: Int -> [(Bad (Bad Int), Int)]
bad2' n = (B Nothing, n) : do
(x, n') <- bad1' n
(y, n'') <- bad1' n'
return (B (Just (P x y)), n'')
bad3' :: Int -> [(Bad (Bad (Bad Int)), Int)]
bad3' n = (B Nothing, n) : do
(x, n') <- bad2' n
(y, n'') <- bad2' n'
return (B (Just (P x y)), n'')