58

我只是提出一个可能关闭的想法。我需要画一个水晶球,其中红色和蓝色粒子随机分布。我想我必须使用 Photoshop,甚至尝试在图像中制作球,但由于这是用于研究论文并且不必花哨,我想知道是否有任何方法可以使用 R、matlab 或任何其他语言。

4

9 回答 9

60

在 R 中,使用rgl包(R-to-OpenGL 接口):

library(rgl)
n <- 100
set.seed(101)
randcoord <- function(n=100,r=1) {
    d <- data.frame(rho=runif(n)*r,phi=runif(n)*2*pi,psi=runif(n)*2*pi)
    with(d,data.frame(x=rho*sin(phi)*cos(psi),
                      y=rho*sin(phi)*sin(psi),
                      z=rho*cos(phi)))
}
    ## http://en.wikipedia.org/wiki/List_of_common_coordinate_transformations
with(randcoord(50,r=0.95),spheres3d(x,y,z,radius=0.02,col="red"))
with(randcoord(50,r=0.95),spheres3d(x,y,z,radius=0.02,col="blue"))
spheres3d(0,0,0,radius=1,col="white",alpha=0.5,shininess=128)
rgl.bg(col="black")
rgl.snapshot("crystalball.png")

在此处输入图像描述

于 2012-10-23T15:26:52.680 回答
39

这与 Ben Bolker 的回答非常相似,但我正在展示如何通过使用一些神秘的颜色为水晶球添加一点光环:

library(rgl)
lapply(seq(0.01, 1, by=0.01), function(x) rgl.spheres(0,0,0, rad=1.1*x, alpha=.01,
    col=colorRampPalette(c("orange","blue"))(100)[100*x]))
rgl.spheres(0,0,0, radius=1.11, col="red", alpha=.1)
rgl.spheres(0,0,0, radius=1.12, col="black", alpha=.1)
rgl.spheres(0,0,0, radius=1.13, col="white", alpha=.1)

xyz <- matrix(rnorm(3*100), ncol=3)
xyz <- xyz * runif(100)^(1/3) / sqrt(rowSums(xyz^2))

rgl.spheres(xyz[1:50,], rad=.02, col="blue")
rgl.spheres(xyz[51:100,], rad=.02, col="red")

rgl.bg(col="black")
rgl.viewpoint(zoom=.75)
rgl.snapshot("crystalball.png")

在此处输入图像描述在此处输入图像描述

两者之间的唯一区别在于lapply通话。您可以看到,仅通过更改颜色colorRampPalette就可以显着改变水晶球的外观。左边的使用lapply上面的代码,右边的使用这个代码:

lapply(seq(0.01, 1, by=0.01), function(x) rgl.spheres(0,0,0,rad=1.1*x, alpha=.01,
     col=colorRampPalette(c("orange","yellow"))(100)[100*x]))
...code from above

这是一种不同的方法,您可以在其中定义自己的纹理文件并使用它为水晶球着色:

# create a texture file, get as creative as you want:
png("texture.png")
x <- seq(1,870)
y <- seq(1,610)
z <- matrix(rnorm(870*610), nrow=870)
z <- t(apply(z,1,cumsum))/100

# Swirly texture options:
# Use the Simon O'Hanlon's roll function from this answer:
# http://stackoverflow.com/questions/18791212/equivalent-to-numpy-roll-in-r/18791252#18791252
# roll <- function( x , n ){
#   if( n == 0 )
#     return( x )
#   c( tail(x,n) , head(x,-n) )
# }

# One option
# z <- mapply(function(x,y) roll(z[,x], y), x = 1:ncol(z), y=1:ncol(z))
#
# Another option
# z <- mapply(function(x,y) roll(z[,x], y), x = 1:ncol(z), y=rep(c(1:50,51:2), 10))[1:870, 1:610]
#
# One more
# z <- mapply(function(x,y) roll(z[,x], y), x = 1:ncol(z), y=rep(seq(0, 100, by=10), each=5))[1:870, 1:610]

par(mar=c(0,0,0,0))
image(x, y, z, col = colorRampPalette(c("cyan","black"))(100), axes = FALSE)
dev.off()

xyz <- matrix(rnorm(3*100), ncol=3)
xyz <- xyz * runif(100)^(1/3) / sqrt(rowSums(xyz^2))

rgl.spheres(xyz[1:50,], rad=.02, col="blue")
rgl.spheres(xyz[51:100,], rad=.02, col="red")

rgl.spheres(0,0,0, rad=1.1, texture="texture.png", alpha=0.4, back="cull")
rgl.viewpoint(phi=90, zoom=.75) # change the view if need be
rgl.bg(color="black")

在此处输入图像描述在此处输入图像描述在此处输入图像描述在此处输入图像描述

左上角的第一张图片是你运行上面的代码得到的结果,其他三张是在注释掉的代码中使用不同选项的结果。

于 2015-04-26T04:46:12.523 回答
33

因为问题是

我想知道是否有任何方法可以使用 R、matlab 或任何其他语言进行编程。

TeX 是图灵完备的,可以被认为是一种编程语言,我花了一些时间并使用 TikZ 在 LaTeX 中创建了一个示例。正如 OP 所写的那样,它是针对研究论文的,假设它也是用 LaTeX 编写的,它具有可以直接集成到论文中的优点。

所以,这里是:

\documentclass[tikz]{standalone}
\usetikzlibrary{positioning, backgrounds}
\usepackage{pgf}
\pgfmathsetseed{\number\pdfrandomseed}

\begin{document}
\begin{tikzpicture}[background rectangle/.style={fill=black},
                    show background rectangle,
                   ] 

    % Definitions
    \def\ballRadius{5}
    \def\pointRadius{0.1}
    \def\nRed{30}
    \def\nBlue{30}

    % Draw all red points
    \foreach \i in {1,...,\nRed}
    {
        % Get random coordinates
        \pgfmathparse{0.9*\ballRadius*rand}\let\mrho\pgfmathresult
        \pgfmathparse{360*rand}\let\mpsi\pgfmathresult
        \pgfmathparse{360*rand}\let\mphi\pgfmathresult

        % Convert to x/y/z
        \pgfmathparse{\mrho*sin(\mphi)*cos(\mpsi)}\let\mx\pgfmathresult
        \pgfmathparse{\mrho*sin(\mphi)*sin(\mpsi)}\let\my\pgfmathresult
        \pgfmathparse{\mrho*cos(\mphi)}\let\mz\pgfmathresult

        \fill[ball color=blue] (\mz,\mx,\my) circle (\pointRadius);
    }

    % Draw all blue points
    \foreach \i in {1,...,\nBlue}
    {
        % Get random coordinates
        \pgfmathparse{0.9*\ballRadius*rand}\let\mrho\pgfmathresult
        \pgfmathparse{360*rand}\let\mpsi\pgfmathresult
        \pgfmathparse{360*rand}\let\mphi\pgfmathresult

        % Convert to x/y/z
        \pgfmathparse{\mrho*sin(\mphi)*cos(\mpsi)}\let\mx\pgfmathresult
        \pgfmathparse{\mrho*sin(\mphi)*sin(\mpsi)}\let\my\pgfmathresult
        \pgfmathparse{\mrho*cos(\mphi)}\let\mz\pgfmathresult

        \fill[ball color=red] (\mz,\mx,\my) circle (\pointRadius);
    }

    % Draw ball
    \shade[ball color=blue!10!white,opacity=0.65] (0,0) circle (\ballRadius);

\end{tikzpicture}
\end{document}

结果:

领域

于 2015-04-25T09:32:10.947 回答
25

我只需要在 Matlab 中生成与 R 答案一样闪亮的东西 :) 所以,这是我的深夜、过于复杂、超慢的解决方案,但的不是吗?:)

figure(1), clf, hold on
whitebg('k')    

light(...
    'Color','w',...
    'Position',[-3 -1 0],...
    'Style','infinite')

colormap cool
brighten(0.2)

[x,y,z] = sphere(50);
surf(x,y,z);

lighting phong
alpha(.2)
shading interp
grid off

blues = 2*rand(15,3)-1;
reds  = 2*rand(15,3)-1;
R     = linspace(0.001, 0.02, 20);

done = false;
while ~done

    indsB = sum(blues.^2,2)>1-0.02;    
    if any(indsB)
        done = false;
        blues(indsB,:) = 2*rand(sum(indsB),3)-1; 
    else
        done = true;
    end

    indsR = sum( reds.^2,2)>1-0.02;
    if any(indsR)
        done = false;
        reds(indsR,:) = 2*rand(sum(indsR),3)-1; 
    else
        done = done && true;
    end

end

nR = numel(R);
[x,y,z] = sphere(15);
for ii = 1:size(blues,1)
    for jj = 1:nR        
        surf(x*R(jj)-blues(ii,1), y*R(jj)-blues(ii,2), z*R(jj)-blues(ii,3), ...
            'edgecolor', 'none', ...
            'facecolor', [1-jj/nR 1-jj/nR 1],...
            'facealpha', exp(-(jj-1)/5));
    end
end

nR = numel(R);
[x,y,z] = sphere(15);
for ii = 1:size(reds,1)
    for jj = 1:nR        
        surf(x*R(jj)-reds(ii,1), y*R(jj)-reds(ii,2), z*R(jj)-reds(ii,3), ...
            'edgecolor', 'none', ...
            'facecolor', [1 1-jj/nR 1-jj/nR],...
            'facealpha', exp(-(jj-1)/5));
    end
end

set(findobj(gca,'type','surface'),...
    'FaceLighting','phong',...
    'SpecularStrength',1,...
    'DiffuseStrength',0.6,...
    'AmbientStrength',0.9,...
    'SpecularExponent',200,...
    'SpecularColorReflectance',0.4 ,...
    'BackFaceLighting','lit');

axis equal
view(30,60)

在此处输入图像描述

于 2012-10-23T21:23:18.637 回答
18

我建议您看一下光线追踪程序例如 povray。我不太懂这门语言,但摆弄了一些例子,我设法不费吹灰之力就完成了。

在此处输入图像描述

background { color rgb <1,1,1,1> }
#include "colors.inc"
#include "glass.inc" 

#declare R = 3;
#declare Rs = 0.05;
#declare Rd = R - Rs ;

camera {location <1, 10 ,1>
right <0, 4/3, 0>
 up    <0,0.1,1>
 look_at  <0.0 , 0.0 , 0.0>}

light_source { 
    z*10000
    White
    }

light_source{<15,25,-25> color  rgb <1,1,1> }

#declare T_05 = texture { pigment { color Clear } finish { F_Glass1 } } 


#declare Ball = sphere {
    <0,0,0>, R
      pigment { rgbf <0.75,0.8,1,0.9> } // A blue-tinted glass

    finish
  { phong 0.5 phong_size 40  // A highlight
    reflection 0.2  // Glass reflects a bit
  }
    interior{ior 1.5}
  }

#declare redsphere =    sphere {
    <0,0,0>, Rs
        pigment{color Red}
      texture { T_05 } interior { I_Glass4 fade_color Col_Red_01 }}

#declare bluesphere =   sphere {
    <0,0,0>, Rs
    pigment{color Blue}
      texture { T_05 } interior { I_Glass4 fade_color Col_Blue_01 }}

object{ Ball }

#declare Rnd_1 = seed (123);
 #for (Cntr, 0, 200)
#declare rr = Rd* rand( Rnd_1);
#declare theta = -pi/2 + pi * rand( Rnd_1);
#declare phi = -pi+2*pi* rand( Rnd_1);
#declare xx = rr * cos(theta) * cos(phi);
#declare yy = rr * cos(theta) * sin(phi);
#declare zz = rr * sin(theta) ;
object{ bluesphere  translate  <xx , yy , zz > }
#declare rr = Rd* rand( Rnd_1);
#declare theta = -pi/2 + pi * rand( Rnd_1);
#declare phi = -pi+2*pi* rand( Rnd_1);
#declare xx = rr * cos(theta) * cos(phi);
#declare yy = rr * cos(theta) * sin(phi);
#declare zz = rr * sin(theta) ;
object{ redsphere  translate  <xx , yy , zz > }
#end 
于 2015-04-28T10:53:20.893 回答
17

游戏有点晚了,但这是一个实现scatter3sph的 Matlab 代码(来自 FEX)

figure('Color', [0.04 0.15 0.4]);
nos = 11; % number small of spheres
S= 3; %small spheres sizes
Grid_Size=256;
%Coordinates
X= Grid_Size*(0.5+rand(2*nos,1));
Y= Grid_Size*(0.5+rand(2*nos,1));
Z= Grid_Size*(0.5+rand(2*nos,1));
%Small spheres colors: (Red & Blue)
C= ones(nos,1)*[0 0 1];
C= [C;ones(nos,1)*[1 0 0]];
% Plot big Sphere
scatter3sph(Grid_Size,Grid_Size,Grid_Size,'size',220,'color',[0.9 0.9 0.9]); hold on
light('Position',[0 0 0],'Style','local');
alpha(0.45);
material shiny 
% Plot small spheres 
scatter3sph(X,Y,Z,'size',S,'color',C);  
axis equal; axis tight; grid off
view([108 -42]);
set(gca,'Visible','off')
set(gca,'color','none')

在此处输入图像描述

于 2012-10-23T20:29:36.313 回答
11

Matlab 的另一种解决方案。

[x,y,z] = sphere(50);
[img] = imread('crystal.jpg');

figure('Color',[0 0 0]);
surf(x,y,z,img,'edgeColor','none','FaceAlpha',.6,'FaceColor','texturemap')
hold on;

i = 0;
while i<100
    px = randn();
    py = randn();
    pz = randn();
    d = pdist([0 0 0; px py pz],'euclidean');
    if d<1
        if mod(i,2)==0
            scatter3(px, py, pz,30,'ro','filled');
        else
            scatter3(px, py, pz,30,'bo','filled');
        end
        i = i+1;
    end
end

hold off;
camlight;

axis equal;
axis off;

输出:

在此处输入图像描述

于 2015-04-28T07:24:01.443 回答
11

在带有 d3.js 的 Javascript 中:http: //jsfiddle.net/jjcosare/rggn86aj/6/ 或 > 运行代码片段

对在线发布很有用。

var particleChangePerMs = 1000;
var particleTotal = 250;
var particleSizeInRelationToCircle = 75;

var svgWidth = (window.innerWidth > window.innerHeight) ? window.innerHeight : window.innerWidth;
var svgHeight = (window.innerHeight > window.innerWidth) ? window.innerWidth : window.innerHeight;

var circleX = svgWidth / 2;
var circleY = svgHeight / 2;
var circleRadius = (circleX / 4) + (circleY / 4);
var circleDiameter = circleRadius * 2;

var particleX = function() {
  return Math.floor(Math.random() * circleDiameter) + circleX - circleRadius;
};
var particleY = function() {
  return Math.floor(Math.random() * circleDiameter) + circleY - circleRadius;
};
var particleRadius = function() {
  return circleDiameter / particleSizeInRelationToCircle;
};
var particleColorList = [
  'blue',
  'red'
];
var particleColor = function() {
  return "url(#" + particleColorList[Math.floor(Math.random() * particleColorList.length)] + "Gradient)";
};

var svg = d3.select("#quantumBall")
  .append("svg")
  .attr("width", svgWidth)
  .attr("height", svgHeight);

var blackGradient = svg.append("svg:defs")
  .append("svg:radialGradient")
  .attr("id", "blackGradient")
  .attr("cx", "50%")
  .attr("cy", "50%")
  .attr("radius", "90%")

blackGradient.append("svg:stop")
  .attr("offset", "80%")
  .attr("stop-color", "black")

blackGradient.append("svg:stop")
  .attr("offset", "100%")
  .attr("stop-color", "grey")

var redGradient = svg.append("svg:defs")
  .append("svg:linearGradient")
  .attr("id", "redGradient")
  .attr("x1", "0%")
  .attr("y1", "0%")
  .attr("x2", "100%")
  .attr("y2", "100%")
  .attr("spreadMethod", "pad");

redGradient.append("svg:stop")
  .attr("offset", "0%")
  .attr("stop-color", "red")
  .attr("stop-opacity", 1);

redGradient.append("svg:stop")
  .attr("offset", "100%")
  .attr("stop-color", "pink")
  .attr("stop-opacity", 1);

var blueGradient = svg.append("svg:defs")
  .append("svg:linearGradient")
  .attr("id", "blueGradient")
  .attr("x1", "0%")
  .attr("y1", "0%")
  .attr("x2", "100%")
  .attr("y2", "100%")
  .attr("spreadMethod", "pad");

blueGradient.append("svg:stop")
  .attr("offset", "0%")
  .attr("stop-color", "blue")
  .attr("stop-opacity", 1);

blueGradient.append("svg:stop")
  .attr("offset", "100%")
  .attr("stop-color", "skyblue")
  .attr("stop-opacity", 1);

svg.append("circle")
  .attr("r", circleRadius)
  .attr("cx", circleX)
  .attr("cy", circleY)
  .attr("fill", "url(#blackGradient)");

function isParticleInQuantumBall(particle) {
  var x1 = circleX;
  var y1 = circleY;
  var r1 = circleRadius;
  var x0 = particle.x;
  var y0 = particle.y;
  var r0 = particle.radius;
  return Math.sqrt((x1 - x0) * (x1 - x0) + (y1 - y0) * (y1 - y0)) < (r1 - r0);
};

function randomizedParticles() {
  d3.selectAll("svg > .particle").remove();
  var particle = {};
  particle.radius = particleRadius();
  for (var i = 0; i < particleTotal;) {
    particle.x = particleX();
    particle.y = particleY();
    particle.color = particleColor();
    if (isParticleInQuantumBall(particle)) {
      svg.append("circle")
        .attr("class", "particle")
        .attr("cx", particle.x)
        .attr("cy", particle.y)
        .attr("r", particle.radius)
        .attr("fill", particle.color);
      i++;
    }
  }
}

setInterval(randomizedParticles, particleChangePerMs);
<script src="https://cdnjs.cloudflare.com/ajax/libs/d3/3.4.11/d3.min.js"></script>
<div id="quantumBall"></div>

于 2015-04-27T11:58:54.530 回答
10

在 R 中,您可以使用该rasterImage功能添加到当前绘图中,您可以创建/下载漂亮的水晶球图像并将其加载到 R 中(参见 png、EBImage 或其他包),然后使其半透明并使用rasterImage将其添加到当前绘图中。我可能会先绘制你的 2 个彩色点,然后在顶部绘制球的图像(在透明度的情况下,它们仍然可见并且看起来就像它们在里面)。

一个更简单的方法(虽然可能不那么好看)是使用该polygon函数绘制一个半透明的灰色圆圈来表示球。

如果您想在 3 维中执行此操作,请查看 rgl 包,这是一个基本示例:

library(rgl)
open3d()
spheres3d(0,0,0, radius=1, color='lightgrey', alpha=0.2)
spheres3d(c(.3,-.3),c(-.2,.4),c(.1,.2), color=c('red','blue'),
     alpha=1, radius=0.15)
于 2012-10-23T15:34:00.570 回答