过去一个月左右,我一直在自学 Weka API(我是学生)。我正在编写一个程序,该程序将过滤一组特定的数据并最终为其构建一个贝叶斯网络,而一周前我已经完成了我的离散化类和属性选择类。就在几天前,我意识到我需要将我的离散化函数更改为有监督的,并最终使用默认的 Fayyad & Irani 方法,在我这样做之后,我开始在我的属性选择类中出现这个错误:
Exception in thread "main" weka.core.WekaException:
weka.attributeSelection.CfsSubsetEval: Not enough training instances with class labels (required: 1, provided: 0)!
at weka.core.Capabilities.test(Capabilities.java:1138)
at weka.core.Capabilities.test(Capabilities.java:1023)
at weka.core.Capabilities.testWithFail(Capabilities.java:1302)
at weka.attributeSelection.CfsSubsetEval.buildEvaluator(CfsSubsetEval.java:331)
at weka.attributeSelection.AttributeSelection.SelectAttributes(AttributeSelection.java:597)
at weka.filters.supervised.attribute.AttributeSelection.batchFinished(AttributeSelection.java:456)
at weka.filters.Filter.useFilter(Filter.java:663)
at AttributeSelectionFilter.selectionFilter(AttributeSelectionFilter.java:29)
at Runner.main(Runner.java:70)
我在更改之前的属性选择工作得很好,所以我认为我可能在我的离散化类中做错了。这个问题的另一部分与此有关,因为我还注意到我的离散类似乎并没有真正对数据进行离散化;它只是将所有数字数据放入 ONE 范围内,而不是像 Fayyad & Irani 那样在战略上对其进行分箱。
这是我的离散类:
import weka.core.Instances;
import weka.filters.Filter;
import weka.filters.supervised.attribute.Discretize;
import weka.filters.unsupervised.attribute.NumericToNominal;
public class DiscretizeFilter
{
private Instances data;
private boolean sensitiveOption;
private Filter filter = new Discretize();
public DiscretizeFilter(Instances data, boolean sensitiveOption)
{
this.data = data;
this.sensitiveOption = sensitiveOption;
}
public Instances discreteFilter() throws Exception
{
NumericToNominal nm = new NumericToNominal();
nm.setInputFormat(data);
Filter.useFilter(data, nm);
Instances nominalData = nm.getOutputFormat();
if(sensitiveOption)//if the user wants extra sensitivity
{
String options[] = new String[1];
options[0] = options[0];
options[2] = "-E";
((Discretize) filter).setOptions(options);
}
filter.setInputFormat(nominalData);
Filter.useFilter(nominalData,filter);
return filter.getOutputFormat();
}
}
这是我的属性选择类:
import weka.attributeSelection.BestFirst;
import weka.attributeSelection.CfsSubsetEval;
import weka.core.Instances;
import weka.filters.supervised.attribute.AttributeSelection;
public class AttributeSelectionFilter
{
public Instances selectionFilter(Instances data) throws Exception
{
AttributeSelection filter = new AttributeSelection();
for(int i = 0; i < data.numInstances(); i++)
{
filter.input(data.instance(i));
}
CfsSubsetEval eval = new CfsSubsetEval();
BestFirst search = new BestFirst();
filter.setSearch(search);
filter.setEvaluator(eval);
filter.setInputFormat(data);
AttributeSelection.useFilter(data, filter);
return filter.getOutputFormat();
}
public int attributeCounter(Instances data)
{
return data.numAttributes();
}
}
任何帮助将不胜感激!!!