这是我以压缩列格式乘以稀疏矩阵的代码
__kernel void mykernel(__global int* colvector,
__global int* val,
__global int* result,
__global int* index,
__global int* rowptr,
__global int* sync )
{
__local int vals[1000];
for(int i=0;i<4;i++)
{
result[i]=0;
}
barrier(CLK_LOCAL_MEM_FENCE);
barrier(CLK_GLOBAL_MEM_FENCE);
const int items_per_row=32;//total threads working in a row
const int thread_id=get_global_id(0)+get_local_id(0);//total threads in the program
const int warpid = thread_id/items_per_row;//warp id is actual row
int lane=thread_id&(items_per_row-1);//thread id within the warp
int row = warpid;
if(row<4)
{
int sum = 0;
int row_start = rowptr[row];
int row_end = rowptr[row+1];
vals[get_global_id(0)]=0;
barrier(CLK_LOCAL_MEM_FENCE);
barrier(CLK_GLOBAL_MEM_FENCE);
for (int i = row_start+lane; i<row_end; i+=items_per_row)
{
vals[get_local_id(0)]+=val[i]*colvector[index[i]];
}
barrier(CLK_LOCAL_MEM_FENCE);
barrier(CLK_GLOBAL_MEM_FENCE);
if (lane < 16 ) vals[get_local_id(0)] += vals[get_local_id(0) + 16];
if (lane < 8 ) vals[get_local_id(0)] += vals[get_local_id(0) + 8];
if (lane < 4 ) vals[get_local_id(0)] += vals[get_local_id(0) +4];
if (lane < 2 ) vals[get_local_id(0)] += vals[get_local_id(0) + 2];
if (lane < 1 ) vals[get_local_id(0)] += vals[get_local_id(0) + 1];
barrier(CLK_LOCAL_MEM_FENCE);
barrier(CLK_GLOBAL_MEM_FENCE);
if(lane==0)
{
result[row] += vals[get_local_id(0)];
}
}
}
上面的 OpenCL 代码是从下面给出的 CUDA 代码转换而来的:
spmv_csr_vector_kernel(const int num_rows,
const int * ptr,
const int * indices,
const float * data,
const float * x,
float * y )
{
__shared__ float vals[];
int thread_id = blockDim.x * blockIdx.x + threadIdx.x; // global thread index
int warp_id = thread_id / 32; // global warp index
int lane = thread_id & (32 - 1); // thread index within the warp
// one warp per row
int row = warp_id;
if (row < num_rows)
{
int row_start = ptr[row];
int row_end = ptr[row+1];
// compute running sum per thread
vals[threadIdx.x] = 0;
for(int jj = row_start + lane; jj < row_end; jj += 32)
{
vals[threadIdx.x] += data[jj] * x[indices[jj]];
}
// parallel reduction in shared memory
if (lane < 16) vals[threadIdx.x] += vals[threadIdx.x + 16];
if (lane < 8) vals[threadIdx.x] += vals[threadIdx.x + 8];
if (lane < 4) vals[threadIdx.x] += vals[threadIdx.x + 4];
if (lane < 2) vals[threadIdx.x] += vals[threadIdx.x + 2];
if (lane < 1) vals[threadIdx.x] += vals[threadIdx.x + 1];
// first thread writes the result
if (lane == 0)
{
y[row] += vals[threadIdx.x];
}
}
}
CUDA 代码是正确的,但我的 OpenCL 内核没有返回正确的输出。我已经尝试了一个星期,但没有解决方案。有人知道我犯了什么错误吗?