我试图运行这段代码:
#!/usr/bin/env python
"""
The example presented at the MURI review, illustrating the use of
jtlvint and automaton modules
Nok Wongpiromsarn (nok@cds.caltech.edu)
August 3, 2010
minor refactoring by SCL <slivingston@caltech.edu>
1 May 2011.
Small modifications by Yuchen Lin.
12 Aug 2011
"""
#@import_section@
import sys, os
from subprocess import call
from tulip import *
import tulip.polytope as pc
#@import_section_end@
# Specify where the smv file, spc file and aut file will go
#@filename_section@
testfile = 'robot_discrete_simple'
path = os.path.abspath(os.path.dirname(sys.argv[0]))
smvfile = os.path.join(path, 'specs', testfile+'.smv')
spcfile = os.path.join(path, 'specs', testfile+'.spc')
autfile = os.path.join(path, 'specs', testfile+'.aut')
#@filename_section_end@
# Specify the environment variables
#@envvar_section@
env_vars = {'park' : 'boolean'}
#@envvar_section_end@
# Specify the discrete system variable
# Introduce a boolean variable X0reach to handle the spec [](park -> <>X0)
# X0reach starts with TRUE.
# [](next(X0reach) = X0 | (X0reach & !park))
#@sysdiscvar_section@
sys_disc_vars = {'X0reach' : 'boolean'}
#@sysdiscvar_section_end@
# Specify the transition system representing the continuous dynamics
#@ts_section@
disc_dynamics = prop2part.PropPreservingPartition(list_region=[], list_prop_symbol=[])
# These following propositions specify in which cell the robot is,
# i.e., Xi means that the robot is in cell Ci
disc_dynamics.list_prop_symbol = ['X0', 'X1', 'X2', 'X3', 'X4', 'X5']
disc_dynamics.num_prop = len(disc_dynamics.list_prop_symbol)
# Regions. Note that the first argument of Region(poly, prop) should
# be a list of polytopes. But since we are not dealing with the actual
# controller, we will just fill it with a string (think of it as a
# name of the region). The second argument of Region(poly, prop) is a
# list that specifies which propositions in cont_props above is
# satisfied. As specified below, regioni satisfies proposition Xi.
region0 = pc.Region('C0', [1, 0, 0, 0, 0, 0])
region1 = pc.Region('C1', [0, 1, 0, 0, 0, 0])
region2 = pc.Region('C2', [0, 0, 1, 0, 0, 0])
region3 = pc.Region('C3', [0, 0, 0, 1, 0, 0])
region4 = pc.Region('C4', [0, 0, 0, 0, 1, 0])
region5 = pc.Region('C5', [0, 0, 0, 0, 0, 1])
disc_dynamics.list_region = [region0, region1, region2, region3, region4, region5]
disc_dynamics.num_regions = len(disc_dynamics.list_region)
# The transition relation between regions. disc_dynamics.trans[i][j] =
# 1 if starting from region j, the robot can move to region i while
# only staying in the union of region i and region j.
disc_dynamics.trans = [[1, 1, 0, 1, 0, 0], \
[1, 1, 1, 0, 1, 0], \
[0, 1, 1, 0, 0, 1], \
[1, 0, 0, 1, 1, 0], \
[0, 1, 0, 1, 1, 1], \
[0, 0, 1, 0, 1, 1]]
#@ts_section_end@
#@specification@
assumption = 'X0reach & []<>(!park)'
guarantee = '[]<>X5 & []<>(X0reach)'
guarantee += ' & [](next(X0reach) = (X0 | (X0reach & !park)))'
#@specification_end@
# Generate input to JTLV
#@geninput@
prob = jtlvint.generateJTLVInput(env_vars, sys_disc_vars, [assumption, guarantee],
{}, disc_dynamics, smvfile, spcfile, verbose=2)
#@geninput_end@
# Check realizability
#@check@
realizability = jtlvint.checkRealizability(smv_file=smvfile, spc_file=spcfile,
aut_file=autfile, verbose=3)
#@check_end@
# Compute an automaton
#@compaut@
jtlvint.computeStrategy(smv_file=smvfile, spc_file=spcfile, aut_file=autfile,
priority_kind=3, verbose=3)
aut = automaton.Automaton(autfile, [], 3)
# Remove dead-end states from automaton.
aut.trimDeadStates()
#@compaut_end@
# Visualize automaton with DOT file
# This example uses environment vs. system turn distinction. To
# disable it, just use (the default),
if not aut.writeDotFile(fname="rdsimple_example.dot", hideZeros=True):
# if not aut.writeDotFile("rdsimple_example.dot",
# distinguishTurns={"env": prob.getEnvVars().keys(),
# "sys": prob.getSysVars().keys()},
# turnOrder=("env", "sys")):
# if not aut.writeDotFileEdged(fname="rdsimple_example.dot",
# env_vars = prob.getEnvVars().keys(),
# sys_vars = prob.getSysVars().keys(),
# hideZeros=True):
print "Error occurred while generating DOT file."
else:
try:
call("dot rdsimple_example.dot -Tpng -o rdsimple_example.png".split())
except:
print "Failed to create image from DOT file. To do so, try\n\ndot rdsimple_example.dot -Tpng -o rdsimple_example.png\n"
# Simulate.
#@sim@
num_it = 30
env_states = [{'X0reach': True}]
for i in range(1, num_it):
if (i%3 == 0):
env_states.append({'park':True})
else:
env_states.append({'park':False})
graph_vis = raw_input
destfile = 'rdsimple_example.gexf'
label_vars = ['park', 'cellID', 'X0reach']
delay = 2
vis_depth = 3
aut_states = grsim.grsim([aut], aut_trans_dict={}, env_states=env_states,
num_it=num_it, deterministic_env=False,
graph_vis=graph_vis, destfile=destfile,
label_vars=label_vars, delay=delay,
vis_depth=vis_depth)
#@sim_end@
然而,就在它结束之前,它在#simulate 处失败,它说:
Traceback (most recent call last):
File "/Applications/Python 2.7/tulip-0.3c/examples/robot_discrete_simple.py", line 151, in <module>
vis_depth=vis_depth)
File "/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/tulip/grsim.py", line 109, in grsim
raise TypeError("Invalid arguments to grsim")
TypeError: Invalid arguments to grsim
不确定此信息是否有帮助,但 DOT 文件也无法创建..
Failed to create image from DOT file. To do so, try
dot rdsimple_example.dot -Tpng -o rdsimple_example.png
为什么给我一个 TypeError 问题?我怎样才能解决这个问题 ?