我认为以下应该有效:
pts = np.array(pts) #Skip if pts is a numpy array already
lp = len(pts)
arr = np.zeros((lp,lp,lp,3))
arr[:,:,:,0] = pts[:,None,None] #None is the same as np.newaxis
arr[:,:,:,1] = pts[None,:,None]
arr[:,:,:,2] = pts[None,None,:]
快速测试:
import numpy as np
import timeit
def meth1(pts):
pts = np.array(pts) #Skip if pts is a numpy array already
lp = len(pts)
arr = np.zeros((lp,lp,lp,3))
arr[:,:,:,0] = pts[:,None,None] #None is the same as np.newaxis
arr[:,:,:,1] = pts[None,:,None]
arr[:,:,:,2] = pts[None,None,:]
return arr
def meth2(pts):
lp = len(pts)
N = lp
arr = np.zeros((lp,lp,lp,3))
for i in xrange(0, N):
for j in xrange(0, N):
for k in xrange(0, N):
arr[i,j,k,0] = pts[i]
arr[i,j,k,1] = pts[j]
arr[i,j,k,2] = pts[k]
return arr
pts = range(10)
a1 = meth1(pts)
a2 = meth2(pts)
print np.all(a1 == a2)
NREPEAT = 10000
print timeit.timeit('meth1(pts)','from __main__ import meth1,pts',number=NREPEAT)
print timeit.timeit('meth2(pts)','from __main__ import meth2,pts',number=NREPEAT)
结果是:
True
0.873255968094 #my way
11.4249279499 #original
所以这种新方法也快了一个数量级。