9

我开发了一个处理 SIGILL 信号的库。因为我想避免 libc 依赖,直接使用 Linux 系统调用。我注意到我的库挂在一些 Linux 系统上,经过大量调试后,我发现使用rt_sigactionsyscall 代替了sigaction解决问题。但是,我没有找到两个系统调用之间差异的描述。SO上有没有人知道基本细节?

更新:我使用信号处理程序来检测 CPU 对某些 ARM 指令扩展的支持,例如 XScale 指令MIATT。这是指令探测功能:

static uint32_t probe_xscale() {
    register uint32_t retValue asm("r0") = 0;
    asm volatile (
        // Equivalent of the following code:
        //  ".arch xscale\n"
        //  "MIATT acc0, r0, r0;"
        // If the next line raises SIGILL,  the signal handle will change r0 to 1 and skip the instruction (4 bytes)
        "MCR P0, 0x1, r0, c15, c0, 0;"
        : "+r" (retValue)
        :
        :
    );
    return retValue;
}

在 SIGILL 处理程序中,我将PC寄存器提前 4 个字节(该指令的大小),并更改其中一个寄存器以指示调用了 SIGILL 处理程序。这是信号处理程序代码。

static void probe_signal_handler(int, siginfo_t *, void* ptr) {
    ucontext_t* ctx = (ucontext_t*)ptr;
    ctx->uc_mcontext.arm_pc += 4;
    ctx->uc_mcontext.arm_r0 = 1;
}

这是我进行探测的方法(如果指令没有导致 SIGILL,则函数返回 0,如果调用了 SIGILL 处理程序,则返回 1,如果 sigaction 系统调用失败,则返回 2):

static uint32_t probeInstruction(uint32_t (*ProbeFunction)()) {
    struct sigaction oldSigillAction;
    struct sigaction probeSigillAction;
    memset(&probeSigillAction, 0, sizeof(probeSigillAction));
    probeSigillAction.sa_sigaction = &probe_signal_handler;
    // Needs Linux >= 2.2
    probeSigillAction.sa_flags = SA_ONSTACK | SA_RESTART | SA_SIGINFO;
    int sigactionResult = _syscall_sigaction(SIGILL, &probeSigillAction, &oldSigillAction);
    if (sigactionResult == 0) {
        const uint32_t probeResult = ProbeFunction();
        _syscall_sigaction(SIGILL, &oldSigillAction, NULL);
        return probeResult;
    } else {
        return 2;
    }
}

这是我对 sigaction syscall 存根函数的实现:

static int _syscall_sigaction(int signum, const struct sigaction *new_action, struct sigaction *old_action) __attribute__((noinline));
static int _syscall_sigaction(int signalNumberParameter, const struct sigaction *newActionParameter, struct sigaction *oldActionParameter) {
    register int result asm ("r0");
    register int signalNumber asm ("r0") = signalNumberParameter;
    register const struct sigaction *newAction asm ("r1") = newActionParameter;
    register struct sigaction *oldAction asm ("r2") = oldActionParameter;
    register int syscallNumber asm ("r7") = __NR_rt_sigaction;
    asm volatile (
        "swi $0;"
        : "=r" (result)
        : "r" (signalNumber), "r" (newAction), "r" (oldAction), "r" (syscallNumber)
        :
    );
    return result;
}

我在 Android SDK (qemu) 的模拟器和运行 Ubuntu 的 Pandaboard 上测试了这段代码。在模拟器中,代码运行良好(在模拟 ARM9 和 Cortex-A8 CPU 时),但在 Pandaboard 上,如果我使用 __NR_sigaction,它会挂在 MIATT 指令上:似乎在信号处理程序之后代码不会跳过 4 个字节,而是运行相同的指令。

4

2 回答 2

4

我没有明确的答案,但我仍然会尝试贡献:

查看内核源代码:

 300SYSCALL_DEFINE3(sigaction, int, sig, const struct sigaction __user *, act,
 301        struct sigaction __user *, oact)
 302{
 303        struct k_sigaction new_ka, old_ka;
 304        int ret;
 305        int err = 0;
 306
 307        if (act) {
 308                old_sigset_t mask;
 309
 310                if (!access_ok(VERIFY_READ, act, sizeof(*act)))
 311                        return -EFAULT;
 312                err |= __get_user(new_ka.sa.sa_handler, &act->sa_handler);
 313                err |= __get_user(new_ka.sa.sa_flags, &act->sa_flags);
 314                err |= __get_user(mask, &act->sa_mask.sig[0]);
 315                if (err)
 316                        return -EFAULT;
 317
 318                siginitset(&new_ka.sa.sa_mask, mask);
 319        }
 320
 321        ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
 322
 323        if (!ret && oact) {
 324                if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)))
 325                        return -EFAULT;
 326                err |= __put_user(old_ka.sa.sa_flags, &oact->sa_flags);
 327                err |= __put_user(old_ka.sa.sa_handler, &oact->sa_handler);
 328                err |= __put_user(old_ka.sa.sa_mask.sig[0], oact->sa_mask.sig);
 329                err |= __put_user(0, &oact->sa_mask.sig[1]);
 330                err |= __put_user(0, &oact->sa_mask.sig[2]);
 331                err |= __put_user(0, &oact->sa_mask.sig[3]);
 332                if (err)
 333                        return -EFAULT;
 334        }
 335
 336        return ret;
 337}
 338#endif

对比

2955SYSCALL_DEFINE4(rt_sigaction, int, sig,
2956                const struct sigaction __user *, act,
2957                struct sigaction __user *, oact,
2958                size_t, sigsetsize)
2959{
2960        struct k_sigaction new_sa, old_sa;
2961        int ret = -EINVAL;
2962
2963        /* XXX: Don't preclude handling different sized sigset_t's.  */
2964        if (sigsetsize != sizeof(sigset_t))
2965                goto out;
2966
2967        if (act) {
2968                if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
2969                        return -EFAULT;
2970        }
2971
2972        ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
2973
2974        if (!ret && oact) {
2975                if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
2976                        return -EFAULT;
2977        }
2978out:
2979        return ret;
2980}

我看到的不同之处在于 rt_sigaction 复制了整个 sigaction 结构,而 sigaction 正在获取和更改内联内存(使用 get/set 用户函数)......我不确定,但可能需要更多时间才能访问直接使用用户空间内存,而不是使用临时副本。

于 2013-01-28T14:56:55.390 回答
2

man sigaction链接)我引用:

最初的 Linux 系统调用被命名为 sigaction()。但是,随着 Linux 2.2 中实时信号的添加,该系统调用支持的固定大小、32 位 sigset_t 类型不再适用。因此,添加了一个新的系统调用 rt_sigaction() 以支持扩大的 sigset_t 类型。新的系统调用采用第四个参数 size_t sigsetsize,它指定 act.sa_mask 和 oldact.sa_mask 中信号集的字节大小。

于 2016-05-23T12:49:18.493 回答