4

以下查询正在大约 400 万行上运行。前两个 CTE 语句在大约一个小时内执行。然而,最后一个有望持续超过 15 年。

WITH parsed AS (
   SELECT name, array(...) description FROM import
), counts AS (
   SELECT unnest(description) token, count(*) FROM parsed GROUP BY 1
) 
INSERT INTO table (name, description) 
SELECT name, ARRAY(
    SELECT ROW(token, count)::a 
    FROM (
        SELECT token, (
            SELECT count 
            FROM counts 
            WHERE a.token=counts.token
            ) 
        FROM UNNEST(description) a(token)
        ) _
    )::a[] description 
FROM parsed;

                                                                  QUERY PLAN                                                                   
-----------------------------------------------------------------------------------------------------------------------------------------------
 Insert on table  (cost=55100824.40..162597717038.41 rows=3611956 width=96)
   CTE parsed
     ->  Seq Scan on import  (cost=0.00..51425557.67 rows=3611956 width=787)
           Filter: ((name IS NOT NULL) AND (description IS NOT NULL))
           SubPlan 1
             ->  HashAggregate  (cost=11.59..12.60 rows=101 width=55)
                   ->  Append  (cost=0.00..11.34 rows=101 width=55)
                         ->  Result  (cost=0.00..0.01 rows=1 width=0)
                         ->  Index Scan using import_aliases_mid_idx on import_aliases  (cost=0.00..10.32 rows=100 width=56)
                               Index Cond: (mid = "substring"(import.mid, 5))
           SubPlan 2
             ->  HashAggregate  (cost=0.78..1.30 rows=100 width=0)
                   ->  Result  (cost=0.00..0.53 rows=100 width=0)
   CTE counts
     ->  HashAggregate  (cost=3675165.23..3675266.73 rows=20000 width=32)
           ->  CTE Scan on parsed  (cost=0.00..1869187.23 rows=361195600 width=32)
   ->  CTE Scan on parsed  (cost=0.00..162542616214.01 rows=3611956 width=96)
         SubPlan 6
           ->  Function Scan on unnest a  (cost=0.00..45001.25 rows=100 width=32)
                 SubPlan 5
                   ->  CTE Scan on counts  (cost=0.00..450.00 rows=100 width=8)
                         Filter: (a.token = token)

parsed和中大约有 400 万行counts。查询当前正在运行,最后一条语句大约每 2 分钟插入一行。它几乎没有接触磁盘,但像疯了一样吃CPU,我很困惑。

查询有什么问题?

最后的语句应该查找descriptionin的每个元素counts,将这样的东西转换成这样[a,b,c]的东西[(a,9),(b,4),(c,0)]并插入它。


编辑

将 parsed 和 counts 作为表,并token在索引计数中,这是计划:

explain INSERT INTO table (name, mid, description) SELECT name, mid, ARRAY(SELECT ROW(token, count)::a FROM (SELECT token, (SELECT count FROM counts WHERE a.token=counts.token) FROM UNNEST(description) a(token)) _)::a[] description FROM parsed;
                                              QUERY PLAN                                              
------------------------------------------------------------------------------------------------------
 Insert on table  (cost=0.00..5761751808.75 rows=4002061 width=721)
   ->  Seq Scan on parsed  (cost=0.00..5761751808.75 rows=4002061 width=721)
         SubPlan 2
           ->  Function Scan on unnest a  (cost=0.00..1439.59 rows=100 width=32)
                 SubPlan 1
                   ->  Index Scan using counts_token_idx on counts  (cost=0.00..14.39 rows=1 width=4)
                         Index Cond: (a.token = token)

这更合理。这些数组平均有 57 个元素,所以我想这只是针对假定的相当低效的 CTE 表进行的大量查找导致性能下降。它现在以每秒 300 行的速度运行,我对此很满意。

4

2 回答 2

2

正如我在对问题的编辑中所述,解析并计为表格,并且计数中的令牌索引它要快得多。我假设 CTE 连接比他们更聪明。

于 2012-11-05T08:47:28.673 回答
1

所以你正在取消嵌套和重新组合 4M 数组,对吗?

我的猜测是你正在处理 RAM 耗尽,所以我认为你有几个选择。首先是在表之间分阶段移动数据,以尽量减少这个问题。

你能判断它是受 CPU 限制还是 I/O 限制吗?

于 2012-10-12T02:13:45.290 回答