以下代码可以很好地提高性能,具体取决于数字的密集程度。使用一组 1000 个随机数,在 0 到 100 之间均匀采样,它的运行速度比您的实现快大约 30 倍。
pos_1_start = 0
for i in range(np.size(vector1)):
for j in range(pos1_start, np.size(vector2)):
if np.abs(vector1[i] - vector2[j]) < .02:
results1 += [(vector1[i], vector2[j], i, j)]
else:
if vector2[j] < vector1[i]:
pos1_start += 1
else:
break
时机:
time new method: 0.112464904785
time old method: 3.59720897675
由以下脚本生成:
import random
import numpy as np
import time
# initialize the vectors to be compared
vector1 = [random.uniform(0, 40) for i in range(1000)]
vector2 = [random.uniform(0, 40) for i in range(1000)]
vector1.sort()
vector2.sort()
# the arrays that will contain the results for the first method
results1 = []
# the arrays that will contain the results for the second method
results2 = []
pos1_start = 0
t_start = time.time()
for i in range(np.size(vector1)):
for j in range(pos1_start, np.size(vector2)):
if np.abs(vector1[i] - vector2[j]) < .02:
results1 += [(vector1[i], vector2[j], i, j)]
else:
if vector2[j] < vector1[i]:
pos1_start += 1
else:
break
t1 = time.time() - t_start
print "time new method:", t1
t = time.time()
for lv1 in range(np.size(vector1)):
for lv2 in range(np.size(vector2)):
if np.abs(vector1[lv1]-vector2[lv2])<.02:
results2 += [(vector1[lv1], vector2[lv2], lv1, lv2)]
t2 = time.time() - t_start
print "time old method:", t2
# sort the results
results1.sort()
results2.sort()
print np.allclose(results1, results2)