另一种方法是使用lapply
set.seed(001) # generating some data.
ts1 <- ts(rnorm(48), start=1, end=48, frequency=1)
ts2 <- ts(rnorm(48), start=1, end=48, frequency=1)
ts3 <- ts(rnorm(48), start=1, end=48, frequency=1)
DF <- data.frame(ts1, ts2, ts3)
ACF <- apply(DF, 2, acf, plot=FALSE)
lapply(ACF, function(x) replace(x$acf, x$acf[1], NA)) # which produces...
$ts1
, , 1
[,1]
[1,] NA
[2,] 0.0401834301
[3,] -0.1866931442
[4,] -0.1225960706
[5,] 0.0959013348
[6,] -0.2063631992
[7,] -0.2094716551
[8,] -0.0003712424
[9,] 0.0498757174
[10,] -0.0704899925
[11,] 0.1237808090
[12,] 0.2161029368
[13,] -0.0286315310
[14,] -0.0159506012
[15,] 0.1319491720
[16,] -0.1252024533
[17,] -0.1513954171
$ts2
, , 1
[,1]
[1,] NA
[2,] -0.096231670
[3,] 0.081568099
[4,] -0.087374506
[5,] -0.177902683
[6,] 0.100911018
[7,] -0.035838433
[8,] 0.127940241
[9,] 0.001778011
[10,] 0.108459764
[11,] 0.064023572
[12,] -0.219530394
[13,] -0.088579334
[14,] 0.044634396
[15,] -0.092443901
[16,] 0.109249684
[17,] -0.196140673
$ts3
, , 1
[,1]
[1,] NA
[2,] -0.14669482
[3,] 0.37416707
[4,] 0.11488186
[5,] 0.17975602
[6,] 0.03751673
[7,] -0.04159624
[8,] 0.13195658
[9,] -0.29795151
[10,] 0.12091659
[11,] -0.25545587
[12,] -0.04727648
[13,] -0.02498085
[14,] 0.03857024
[15,] -0.02722294
[16,] -0.02330514
[17,] 0.08765119
或者只是忽略 0 阶的自相关
lapply(ACF, '[', 1:16)
$ts1
Autocorrelations of series ‘newX[, i]’, by lag
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0.040 -0.187 -0.123 0.096 -0.206 -0.209 0.000 0.050 -0.070 0.124 0.216 -0.029 -0.016 0.132 -0.125 -0.151
$ts2
Autocorrelations of series ‘newX[, i]’, by lag
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
-0.096 0.082 -0.087 -0.178 0.101 -0.036 0.128 0.002 0.108 0.064 -0.220 -0.089 0.045 -0.092 0.109 -0.196
$ts3
Autocorrelations of series ‘newX[, i]’, by lag
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
-0.147 0.374 0.115 0.180 0.038 -0.042 0.132 -0.298 0.121 -0.255 -0.047 -0.025 0.039 -0.027 -0.023 0.088