I working on a site that needs to present a set of options that have no particular order. I need to sort this list based on the customer that is viewing the list. I thought of doing this by generating recommendation rules and sorting the list putting the best suited to be liked by the customer on the top. Furthermore I think I'd be cool that if the confidence in the recommendation is high, I can tell the customer why I'm recommending that.
For example, lets say we have an icecream joint who has website where customers can register and make orders online. The customer information contains basic info like gender, DOB, address, etc. My goal is mining previous orders made by customers to generate rules with the format
feature -> flavor
where feature would be either information in the profile or in the order itself (like, for example, we might ask how many people are you expecting to serve, their ages, etc). I would then pull the rules that apply to the current customer and use the ones with higher confidence on the top of the list.
My question, what's the best standar algorithm to solve this? I have some experience in apriori and initially I thought of using it but since I'm interested in having only 1 consequent I'm thinking now that maybe other alternatives might be better suited. But in any case I'm not that knowledgeable about machine learning so I'd appreciate any help and references.