这是计算 3D 平面多边形面积的公式的推导
这是实现它的 Python 代码:
#determinant of matrix a
def det(a):
return a[0][0]*a[1][1]*a[2][2] + a[0][1]*a[1][2]*a[2][0] + a[0][2]*a[1][0]*a[2][1] - a[0][2]*a[1][1]*a[2][0] - a[0][1]*a[1][0]*a[2][2] - a[0][0]*a[1][2]*a[2][1]
#unit normal vector of plane defined by points a, b, and c
def unit_normal(a, b, c):
x = det([[1,a[1],a[2]],
[1,b[1],b[2]],
[1,c[1],c[2]]])
y = det([[a[0],1,a[2]],
[b[0],1,b[2]],
[c[0],1,c[2]]])
z = det([[a[0],a[1],1],
[b[0],b[1],1],
[c[0],c[1],1]])
magnitude = (x**2 + y**2 + z**2)**.5
return (x/magnitude, y/magnitude, z/magnitude)
#dot product of vectors a and b
def dot(a, b):
return a[0]*b[0] + a[1]*b[1] + a[2]*b[2]
#cross product of vectors a and b
def cross(a, b):
x = a[1] * b[2] - a[2] * b[1]
y = a[2] * b[0] - a[0] * b[2]
z = a[0] * b[1] - a[1] * b[0]
return (x, y, z)
#area of polygon poly
def area(poly):
if len(poly) < 3: # not a plane - no area
return 0
total = [0, 0, 0]
for i in range(len(poly)):
vi1 = poly[i]
if i is len(poly)-1:
vi2 = poly[0]
else:
vi2 = poly[i+1]
prod = cross(vi1, vi2)
total[0] += prod[0]
total[1] += prod[1]
total[2] += prod[2]
result = dot(total, unit_normal(poly[0], poly[1], poly[2]))
return abs(result/2)
为了测试它,这是一个倾斜的 10x5 正方形:
>>> poly = [[0, 0, 0], [10, 0, 0], [10, 3, 4], [0, 3, 4]]
>>> poly_translated = [[0+5, 0+5, 0+5], [10+5, 0+5, 0+5], [10+5, 3+5, 4+5], [0+5, 3+5, 4+5]]
>>> area(poly)
50.0
>>> area(poly_translated)
50.0
>>> area([[0,0,0],[1,1,1]])
0
最初的问题是我过于简单化了。它需要计算垂直于平面的单位向量。面积是其点积和所有叉积总和的一半,而不是叉积所有量值总和的一半。
这可以稍微清理一下(如果有矩阵和向量类,或者行列式/叉积/点积的标准实现,它会更好),但它在概念上应该是合理的。