我在 R 中有一个程序,它调用了几个支持 openMP 的 Fortran 例程。有两个 Fortran 例程sub_1
和sub_2
. 第一个在 R 函数中被调用两次,而第二个被调用一次。除了一些小事情外,这两个例程几乎相同。我调用第一个例程,然后调用第二个例程,然后再次调用第一个例程。但是,如果我让它们都启用了 openMP,则该函数在第二次使用第一个 fortran 例程时停止执行任何操作(没有错误或停止执行,只是坐在那里)。
如果我禁用 openMP,sub_1
那么一切运行正常。如果我改为禁用 .openMP 中的 openMP sub_2
,那么它在sub_1
. 这很奇怪,因为它显然可以很好地通过第一次使用。
我认为这可能与线程未正确关闭或其他原因有关(我对 openMP 不太了解)。然而,另一个奇怪的是,调用这三个例程的 R 函数被调用了四次,如果我只启用 openMP in sub_2
,那么这工作正常(即第二个、第三个等调用sub_2
不会挂起)。我只是不知道它为什么会这样做!作为参考,这是以下代码sub_1
:
subroutine correlation_dd_rad(s_bins,min_s,end_s,n,pos1,dd,r)
!!! INTENT IN !!!!!!!!
integer :: s_bins !Number of separation bins
integer :: N !Number of objects
real(8) :: pos1(3,N) !Cartesian Positions of particles
real(8) :: min_s !The smallest separation calculated.
real(8) :: end_s !The largest separation calculated.
real(8) :: r(N) !The radii of each particle (ascending)
!!! INTENT OUT !!!!!!!
real(8) :: dd(N,s_bins) !The binned data.
!!! LOCAL !!!!!!!!!!!!
integer :: i,j !Iterators
integer :: bin
real(8) :: d !Distance between particles.
real(8) :: dr,mins,ends
real(8),parameter :: pi = 3.14159653589
integer :: counter
dd(:,:) = 0.d0
dr = (end_s-min_s)/s_bins
!Perform the separation binning
mins = min_s**2
ends = end_s**2
counter = 1000
!$OMP parallel do private(d,bin,j)
do i=1,N
!$omp critical (count_it)
counter = counter - 1
!$omp end critical (count_it)
if(counter==0)then
counter = 1000
write(*,*) "Another Thousand"
end if
do j=i+1,N
if(r(j)-r(i) .GT. end_s)then
exit
end if
d=(pos1(1,j)-pos1(1,i))**2+&
&(pos1(2,j)-pos1(2,i))**2+&
&(pos1(3,j)-pos1(3,i))**2
if(d.LT.ends .AND. d.GT.mins)then
d = Sqrt(d)
bin = Floor((d-min_s)/dr)+1
dd(i,bin) = dd(i,bin)+1.d0
dd(j,bin) = dd(j,bin)+1.d0
end if
end do
end do
!$OMP end parallel do
write(*,*) "done"
end subroutine
有谁知道为什么会发生这种情况?
干杯。
我将添加一个我能想到的最小的例子,它确实重现了这个问题(顺便说一下,这一定是一个 R 问题——我在这里展示的类型的一个小例子,但是用 fortran 编写的可以正常工作)。所以我在fortran中有上面的代码和下面的代码,编译到共享对象correlate.so
:
subroutine correlation_dr_rad(s_bins,min_s,end_s,n,pos1,n2,pos2,dd,r1,r2)
!!! INTENT IN !!!!!!!!
integer :: s_bins !Number of separation bins
integer :: N !Number of objects
integer :: n2
real(8) :: pos1(3,N) !Cartesian Positions of particles
real(8) :: pos2(3,n2) !random particles
real(8) :: end_s !The largest separation calculated.
real(8) :: min_s !The smallest separation
real(8) :: r1(N),r2(N2) !The radii of particles (ascending)
!!! INTENT OUT !!!!!!!
real(8) :: dd(N,s_bins) !The binned data.
!!! LOCAL !!!!!!!!!!!!
integer :: i,j !Iterators
integer :: bin
real(8) :: d !Distance between particles.
real(8) :: dr,mins,ends
real(8),parameter :: pi = 3.14159653589
integer :: counter
dd(:,:) = 0.d0
dr = (end_s-min_s)/s_bins
!Perform the separation binning
mins = min_s**2
ends = end_s**2
write(*,*) "Got just before parallel dr"
counter = 1000
!$OMP parallel do private(d,bin,j)
do i=1,N
!$OMP critical (count)
counter = counter - 1
!$OMP end critical (count)
if(counter==0)then
write(*,*) "Another thousand"
counter = 1000
end if
do j=1,N2
if(r2(j)-r1(i) .GT. end_s)then
exit
end if
d=(pos1(1,j)-pos2(1,i))**2+&
&(pos1(2,j)-pos2(2,i))**2+&
&(pos1(3,j)-pos2(3,i))**2
if(d.GT.mins .AND. d.LT.ends)then
d = Sqrt(d)
bin = Floor((d-min_s)/dr)+1
dd(i,bin) = dd(i,bin)+1.d0
end if
end do
end do
!$OMP end parallel do
write(*,*) "Done"
end subroutine
然后在 R 中,我有以下函数——前两个只是包装了上面的 fortran 代码。第三个以与我的实际代码类似的方式调用它:
correlate_dd_rad = function(pos,r,min_r,end_r,bins){
#A wrapper for the fortran routine of the same name.
dyn.load('correlate.so')
out = .Fortran('correlation_dd_rad',
s_bins = as.integer(bins),
min_s = as.double(min_r),
end_s = as.double(end_r),
n = as.integer(length(r)),
pos = as.double(t(pos)),
dd = matrix(0,length(r),bins), #The output matrix.
r = as.double(r))
dyn.unload('correlate.so')
return(out$dd)
}
correlate_dr_rad = function(pos1,r1,pos2,r2,min_r,end_r,bins){
#A wrapper for the fortran routine of the same name
N = length(r1)
N2 = length(r2)
dyn.load('correlate.so')
out = .Fortran('correlation_dr_rad',
s_bins = as.integer(bins),
min_s = as.double(min_r),
end_s = as.double(end_r),
n = N,
pos1 = as.double(t(pos1)),
n2 = N2,
pos2 = as.double(t(pos2)),
dr = matrix(0,nrow=N,ncol=bins),
r1 = as.double(r1),
r2 = as.double(r2))
dyn.unload('correlate.so')
return(out$dr)
}
the_calculation = function(){
#Generate some data to use
pos1 = matrix(rnorm(30000),10000,3)
pos2 = matrix(rnorm(30000),10000,3)
#Find the radii
r1 = sqrt(pos1[,1]^2 + pos1[,2]^2+pos1[,3]^2)
r2 = sqrt(pos2[,1]^2 + pos2[,2]^2+pos2[,3]^2)
#usually sort them but it doesn't matter here.
#Now call the functions
print("Calculating the data-data pairs")
dd = correlate_dd_rad(pos=pos1,r=r1,min_r=0.001,end_r=0.8,bins=15)
print("Calculating the data-random pairs")
dr = correlate_dr_rad(pos1,r1,pos2,r2,min_r=0.001,end_r=0.8,bins=15)
print("Calculating the random-random pairs")
rr = correlate_dd_rad(pos=pos2,r=r2,min_r=0.001,end_r=0.8,bins=15)
#Now we would do something with it but I don't care in this example.
print("Done")
}
运行这个我得到输出:
[1] "Calculating the data-data pairs"
Another Thousand
Another Thousand
Another Thousand
Another Thousand
Another Thousand
Another Thousand
Another Thousand
Another Thousand
Another Thousand
Another Thousand
done
[1] "Calculating the data-random pairs"
Got just before parallel dr
Another thousand
Another thousand
然后它就坐在那里......实际上,运行它几次表明它每次都会改变它挂起的位置。有时它会在第二次调用 to 时获得大部分时间,而在correlate_dd_rad
其他情况下它只会在调用 to 中途获得correlate_dr_rad
。