Find centralized, trusted content and collaborate around the technologies you use most.
Teams
Q&A for work
Connect and share knowledge within a single location that is structured and easy to search.
我试图证明对于任何常数,,k(log^k N = o(N)N 中的小 O)
k
log^k N = o(N)
我对小 o 所知道的只是它遵循以低于T(n) = o(p(n))的T(n)速度增长的形式p(n)。我也不能真正做一个限制和使用L'hopital rule,因为我不知道是f(n)什么g(n)。有人可以帮我开始吗!
T(n) = o(p(n))
T(n)
p(n)
L'hopital rule
f(n)
g(n)
你需要证明
lim (log^k N)/N = 0 N -> infinity
写N = e^x,那变成
N = e^x
lim (x^k)/(e^x) = 0
现在,使用指数函数的幂级数展开,
e^x = ∑ (x^n)/n!
得到该商的估计值。
n = k+1剧透:用给和从中挑选术语e^x > x^(k+1)/(k+1)!很容易遵循(x^k)/(e^x) < (k+1)!/x。
n = k+1
e^x > x^(k+1)/(k+1)!
(x^k)/(e^x) < (k+1)!/x