这是扩展欧几里得算法的实现。我从这个答案中获取了代码,对其进行了概括,使其适用于 2 62以外的模数,并将其从 Java 转换为 Python:
def multiplicativeInverse(x, modulus):
if modulus <= 0:
raise ValueError("modulus must be positive")
a = abs(x)
b = modulus
sign = -1 if x < 0 else 1
c1 = 1
d1 = 0
c2 = 0
d2 = 1
# Loop invariants:
# c1 * abs(x) + d1 * modulus = a
# c2 * abs(x) + d2 * modulus = b
while b > 0:
q = a / b
r = a % b
# r = a - qb.
c3 = c1 - q*c2
d3 = d1 - q*d2
# Now c3 * abs(x) + d3 * modulus = r, with 0 <= r < b.
c1 = c2
d1 = d2
c2 = c3
d2 = d3
a = b
b = r
if a != 1:
raise ValueError("gcd of %d and %d is %d, so %d has no "
"multiplicative inverse modulo %d"
% (x, modulus, a, x, modulus))
return c1 * sign;