我有一个简单的 Eratosthanes 筛实现,如下所示:
# Generate all primes less than k
def sieve(k):
s = [True] * k
s[0] = s[1] = False
for i in range(4, k, 2):
s[i] = False
for i in range(3, int(sqrt(k)) + 2, 2):
if s[i]:
for j in range(i ** 2, k, i * 2):
s[j] = False
return [2] + [ i for i in range(3, k, 2) if s[i] ]
我通过重复生成 10M 以下的素数来对这段代码进行基准测试:
st = time()
for x in range(1000):
rt = time()
sieve(10000000)
print "%3d %.2f %.2f" % (x, time() - rt, (time() - st) / (x + 1))
我很困惑,因为每次测试运行所花费的时间显着增加:
run t avg
0 1.49 1.49
1 1.79 1.66
2 2.23 1.85
3 2.72 2.07
4 2.67 2.20
5 2.87 2.31
6 3.05 2.42
7 3.57 2.56
8 3.38 2.65
9 3.48 2.74
10 3.81 2.84
11 3.75 2.92
12 3.85 2.99
13 4.14 3.07
14 4.02 3.14
15 4.05 3.20
16 4.48 3.28
17 4.41 3.34
18 4.19 3.39
19 4.22 3.43
20 4.65 3.49
但是,将 的每个实例更改为range
可以xrange
消除该问题:
run t avg
0 1.26 1.26
1 1.23 1.28
2 1.24 1.27
3 1.25 1.26
4 1.23 1.26
5 1.23 1.25
6 1.25 1.25
7 1.25 1.25
8 1.23 1.25
9 1.25 1.25
10 1.24 1.25
为什么会这样?真的都是 GC 开销吗?运行 20 次后减速 3 倍似乎很多......