我认为使用 Apache Solr 或 ElasticSearch 可以获得更大的灵活性和性能,但是使用Aggregation Framework支持这一点。
使用 MongoDB 的主要问题是您必须查询 N 次:首先获取匹配结果,然后每组一次;在使用全文搜索引擎时,您可以在一个查询中获得所有信息。
例子
//'tags' filter simulates the search
//this query gets the products
db.products.find({tags: {$all: ["tag1", "tag2"]}})
//this query gets the size facet
db.products.aggregate(
{$match: {tags: {$all: ["tag1", "tag2"]}}},
{$group: {_id: "$size"}, count: {$sum:1}},
{$sort: {count:-1}}
)
//this query gets the color facet
db.products.aggregate(
{$match: {tags: {$all: ["tag1", "tag2"]}}},
{$group: {_id: "$color"}, count: {$sum:1}},
{$sort: {count:-1}}
)
//this query gets the brand facet
db.products.aggregate(
{$match: {tags: {$all: ["tag1", "tag2"]}}},
{$group: {_id: "$brand"}, count: {$sum:1}},
{$sort: {count:-1}}
)
一旦用户使用构面过滤搜索,您必须添加此过滤器来查询谓词和匹配谓词,如下所示。
//user clicks on "Brand 1" facet
db.products.find({tags: {$all: ["tag1", "tag2"]}, brand: "Brand 1"})
db.products.aggregate(
{$match: {tags: {$all: ["tag1", "tag2"]}}, brand: "Brand 1"},
{$group: {_id: "$size"}, count: {$sum:1}},
{$sort: {count:-1}}
)
db.products.aggregate(
{$match: {tags: {$all: ["tag1", "tag2"]}}, brand: "Brand 1"},
{$group: {_id: "$color"}, count: {$sum:1}},
{$sort: {count:-1}}
)
db.products.aggregate(
{$match: {tags: {$all: ["tag1", "tag2"]}}, brand: "Brand 1"},
{$group: {_id: "$brand"}, count: {$sum:1}},
{$sort: {count:-1}}
)