我的理解是您对以下两种情况感兴趣:
- 您有很长的项目序列,并且您希望通过对不同数量的项目进行平均来计算一定数量的平均值,即,对移动平均窗口使用不同的长度。这是我从你原来的问题中理解的。
- 您有一系列序列,连续存储在内存中,并且您希望使用大小为 的固定平均窗口并行平均它们
2 * RADIUS + 1
。这就是@asm 提出的 ArrayFire 代码的作用——你已经接受了。
而不是使用 CUDA Thrust,我认为编写自己的 CUDA 内核来执行上述操作会更容易。下面是一个完整的示例,其操作方式与@asm 提出的 ArrayFire 代码相同,因此涵盖了案例 #2。修改它以涵盖案例#1 将很简单。
#include <thrust/device_vector.h>
#define RADIUS 3
#define BLOCK_SIZE_X 8
#define BLOCK_SIZE_Y 8
/*******************/
/* iDivUp FUNCTION */
/*******************/
int iDivUp(int a, int b){ return ((a % b) != 0) ? (a / b + 1) : (a / b); }
/********************/
/* CUDA ERROR CHECK */
/********************/
#define gpuErrchk(ans) { gpuAssert((ans), __FILE__, __LINE__); }
inline void gpuAssert(cudaError_t code, const char *file, int line, bool abort=true)
{
if (code != cudaSuccess)
{
fprintf(stderr,"GPUassert: %s %s %d\n", cudaGetErrorString(code), file, line);
if (abort) exit(code);
}
}
/**********/
/* KERNEL */
/**********/
__global__ void moving_average(unsigned int *in, unsigned int *out, unsigned int M, unsigned int N) {
__shared__ unsigned int temp[BLOCK_SIZE_Y][BLOCK_SIZE_X + 2 * RADIUS];
unsigned int gindexx = threadIdx.x + blockIdx.x * blockDim.x;
unsigned int gindexy = threadIdx.y + blockIdx.y * blockDim.y;
unsigned int gindex = gindexy * N + gindexx;
unsigned int lindexx = threadIdx.x + RADIUS;
unsigned int lindexy = threadIdx.y;
// --- Read input elements into shared memory
temp[lindexy][lindexx] = ((gindexx < N)&&(gindexy < M))? in[gindex] : 0;
if (threadIdx.x < RADIUS) {
temp[lindexy][threadIdx.x] = ((gindexx >= RADIUS)&&(gindexx < (N + RADIUS))&&(gindexy < M)) ? in[gindex - RADIUS] : 0;
temp[lindexy][threadIdx.x + (RADIUS + min(BLOCK_SIZE_X, N - blockIdx.x * BLOCK_SIZE_X))] = (((gindexx + min(BLOCK_SIZE_X, N - blockIdx.x * BLOCK_SIZE_X)) < N)&&(gindexy < M))? in[gindexy * N + gindexx + min(BLOCK_SIZE_X, N - blockIdx.x * BLOCK_SIZE_X)] : 0;
if ((threadIdx.y == 0)&&(gindexy < M)&&((gindexx + BLOCK_SIZE_X) < N)&&(gindexy < M)) printf("Inside 2 - tidx = %i; bidx = %i; tidy = %i; bidy = %i; lindexx = %i; temp = %i\n", threadIdx.x, blockIdx.x, threadIdx.y, blockIdx.y, threadIdx.x + (RADIUS + BLOCK_SIZE_X), temp[lindexy][threadIdx.x + (RADIUS + BLOCK_SIZE_X)]);
}
__syncthreads();
// --- Apply the stencil
unsigned int result = 0;
for (int offset = -RADIUS ; offset <= RADIUS ; offset++) {
result += temp[lindexy][lindexx + offset];
}
// --- Store the result
out[gindexy * N + gindexx] = result;
}
/********/
/* MAIN */
/********/
int main() {
const unsigned int M = 2;
const unsigned int N = 4 + 2 * RADIUS;
const unsigned int constant = 3;
thrust::device_vector<unsigned int> d_in(M * N, constant);
thrust::device_vector<unsigned int> d_out(M * N);
dim3 GridSize(iDivUp(N, BLOCK_SIZE_X), iDivUp(M, BLOCK_SIZE_Y));
dim3 BlockSize(BLOCK_SIZE_X, BLOCK_SIZE_Y);
moving_average<<<GridSize, BlockSize>>>(thrust::raw_pointer_cast(d_in.data()), thrust::raw_pointer_cast(d_out.data()), M, N);
gpuErrchk(cudaPeekAtLastError());
gpuErrchk(cudaDeviceSynchronize());
thrust::host_vector<unsigned int> h_out = d_out;
for (int j=0; j<M; j++) {
for (int i=0; i<N; i++)
printf("Element j = %i; i = %i; h_out = %i\n", j, i, h_out[N*j+i]);
}
return 0;
}