4

我正在使用numpy / pandas进行SPC分析。

其中一部分是根据Nelson 规则Western Electric 规则检查数据系列。

例如(尼尔森规则中的规则 2):检查连续九个(或更多)点是否在均值的同一侧。

现在我可以通过遍历数组来简单地检查这样的规则。

  • 但在我这样做之前,我在这里检查一下,如果 numpy/pandas 有办法在不迭代的情况下做到这一点?
  • 无论如何:实现上述检查的“numpy-ic”方法是什么?
4

4 回答 4

2
import numpy as np
x = np.random.rand(100)
f = np.sign(x - x.mean())
c = np.cumsum(f)
d = c[9:] - c[:-9]
print np.max(d), np.min(d)

如果 np.max(d) == 9 或 np.min(d) == -9 则连续有九个(或更多)点位于均值的同一侧。

或者您可以使用以下代码来计算每一行的长度:

np.diff(np.where(np.diff(np.r_[-2,f,-2]))[0])
于 2012-09-11T13:27:44.277 回答
1

给定data和 minimum length,您可以检查数组是否

np.diff(np.cumsum(np.sign(data - np.mean(data))), length)

包含零。

于 2012-09-11T13:14:27.627 回答
1

另一种可能性:使用相关或卷积

>>> a = np.random.randn(50)
>>> b = (a - a.mean()) > 0
>>> b.astype(int)
array([0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1,
       1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0,
       1, 1, 1, 1])

>>> c = np.correlate(b, np.ones(3), mode='valid')
>>> c
array([ 2.,  2.,  1.,  1.,  1.,  1.,  0.,  0.,  1.,  2.,  3.,  2.,  2.,
        1.,  1.,  0.,  0.,  1.,  2.,  3.,  3.,  3.,  3.,  3.,  2.,  2.,
        2.,  2.,  2.,  1.,  1.,  1.,  1.,  2.,  1.,  2.,  2.,  2.,  1.,
        0.,  0.,  1.,  2.,  2.,  2.,  2.,  3.,  3.])

>>> c.max() == 3
True
>>> c.min() == 0
True

它会比 HYRY cumsum 版本慢。

旁白:在 statsmodels 中有一个用于测试类似运行的运行测试

于 2012-09-11T13:37:46.313 回答
1

正如我在评论中提到的,您可能想尝试使用一些跨步技巧。

  • 首先,让我们创建一个异常大小的数组:我们可以把它当作np.int8节省一些空间

    anomalies = x - x.mean()
    signs = np.sign(anomalies).astype(np.int8)
    
  • 现在大步前进。如果要考虑N连续点,您将使用

    from np.lib.stride_tricks import as_strided
    strided = as_strided(signs, 
                         strides=(signs.itemsize,signs.itemsize), 
                         shape=(signs.shape,N))
    

    这给了我们一个(x.size, N)rollin 数组:第一行是x[0:N],第二行x[1:N+1]……当然,最后N-1一行是没有意义的,所以从现在开始我们将使用

    strided = strided[:-N+1]
    
  • 让我们沿行求和

    consecutives = strided.sum(axis=-1)
    

    这给了我们一个介于和(x.size-N+1)之间的值大小的数组:我们只需要找到绝对值在哪里:-N+NN

    (indices,) = np.nonzero(consecutives == N)
    

    indices是数组的索引i数组x,其值x[i:i+N]位于均值的同一侧...

x=np.random.rand(10)带有和的示例N=3

>>> x = array([ 0.57016436,  0.79360943,  0.89535982,  0.83632245,  0.31046202,
            0.91398363,  0.62358298,  0.72148491,  0.99311681,  0.94852957])
>>> signs = np.sign(x-x.mean()).astype(np.int8)
array([-1,  1,  1,  1, -1,  1, -1, -1,  1,  1], dtype=int8)
>>> strided = as_strided(signs,strides=(1,1),shape=(signs.size,3))
array([[  -1,    1,    1],
       [   1,    1,    1],
       [   1,    1,   -1],
       [   1,   -1,    1],
       [  -1,    1,   -1],
       [   1,   -1,   -1],
       [  -1,   -1,    1],
       [  -1,    1,    1],
       [   1,    1, -106],
       [   1, -106,  -44]], dtype=int8)
>>> consecutive=strided[:-N+1].sum(axis=-1)
array([ 1,  3,  1,  1, -1, -1, -1,  1])
>>> np.nonzero(np.abs(consecutive)==N)
(array([1]),)
于 2012-09-11T23:58:19.973 回答