75

我需要一个工作算法来在无向图中查找所有简单循环。我知道成本可能是指数的,问题是 NP 完全的,但我将在一个小图中(最多 20-30 个顶点)使用它,并且循环数量很少。

经过长时间的研究(主要是这里),我仍然没有工作方法。以下是我的搜索摘要:

在无向图中查找所有循环

无向图中的循环-> 仅检测是否存在循环

在无向图中查找多边形-> 非常好的描述,但没有解决方案

在有向图中查找所有循环-> 仅在有向图中查找循环

使用boost图库检测无向图中的循环

我找到的唯一解决我的问题的答案是这个:

查找图中的所有循环,redux

似乎找到一组基本循环并对它们进行异或运算可以解决问题。找到一组基本循环很容易,但我不明白如何组合它们以获得图中的所有循环......

4

11 回答 11

53

对于无向图,标准方法是寻找所谓的循环基:一组简单的循环,可以通过组合所有其他循环从中生成。这些不一定都是图中的简单循环。例如考虑下图:

    A 
  /   \
B ----- C
  \   /
    D

这里有 3 个简单的循环:ABCA、BCDB 和 ABDCA。但是,您可以将其中的每 2 个作为基础,并将第 3 个作为 2 的组合。这与有向图有很大的不同,因为需要观察边缘方向,因此无法如此自由地组合循环。

为无向图寻找循环基的标准基线算法是这样的:构建一棵生成树,然后为不属于树的每个边从该边和树上的一些边构建一个循环。这样的循环必须存在,否则边缘将成为树的一部分。

例如,上面示例图的可能生成树之一是:

    A 
  /   \
B      C
  \ 
    D

不在树中的 2 条边是 BC 和 CD。对应的简单循环是ABCA和ABDCA。

您还可以构建以下生成树:

    A 
  /   
B ----- C
  \   
    D

对于这个生成树,简单的循环是 ABCA 和 BCDB。

基线算法可以以不同的方式进行细化。据我所知,最好的改进属于 Paton(K. Paton,An algorithm for find a basic set of cycles for an undirected linear graph, Comm. ACM 12 (1969), pp. 514-518.)。此处提供了 Java 的开源实现:http ://code.google.com/p/niographs/ 。

我应该提到你如何结合循环基础中的简单循环来形成新的简单循环。您首先以任何(但此后固定)顺序列出图形的所有边。然后,通过将 1 放置在属于循环的边的位置并将零放置在不属于循环的边的位置,您可以通过 0 和 1 的序列来表示循环。然后你对序列进行按位异或(XOR)。您执行 XOR 的原因是您想要排除属于两个循环的边,从而使组合循环不简单。您还需要通过检查序列的按位与是否不全为零来检查 2 个周期是否有一些共同的边缘。否则 XOR 的结果将是 2 个不相交的循环,而不是一个新的简单循环。

这是上面示例图的示例:

我们首先列出边:((AB),(AC),(BC),(BD),(CD))。那么简单循环ABCA、BDCB和ABDCA表示为(1, 1, 1, 0, 0), (0, 0, 1, 1, 1)和(1, 1, 0, 1, 1)。现在我们可以用 BDCB 对 ABCA 进行异或运算,结果是 (1, 1, 0, 1, 1),这正是 ABDCA。或者我们可以对 ABCA 和 ABDCA 进行异或运算,结果为 (0, 0, 1, 1, 1)。这正是BDCB。

给定一个循环基础,您可以通过检查 2 个或更多不同基础循环的所有可能组合来发现所有简单循环。该过程在此处进行了更详细的描述:http: //dspace.mit.edu/bitstream/handle/1721.1/68106/FTL_R_1982_07.pdf第 14 页。

为了完整起见,我会注意到使用算法来查找有向图的所有简单循环似乎是可能的(而且效率低下)。无向图的每条边都可以用两条相反方向的有向边代替。然后有向图的算法应该可以工作。对于必须忽略的无向图的每条边,将有 1 个“假”2 节点循环,并且无向图的每个简单循环都会有顺时针和逆时针版本。用于在有向图中查找所有循环的算法的 Java 开源实现可以在我已经引用的链接中找到。

于 2013-08-22T18:55:34.907 回答
36

Axel,我已将您的代码翻译成 python。大约 1/4 的代码行并且更清晰易读。

graph = [[1, 2], [1, 3], [1, 4], [2, 3], [3, 4], [2, 6], [4, 6], [8, 7], [8, 9], [9, 7]]
cycles = []

def main():
    global graph
    global cycles
    for edge in graph:
        for node in edge:
            findNewCycles([node])
    for cy in cycles:
        path = [str(node) for node in cy]
        s = ",".join(path)
        print(s)

def findNewCycles(path):
    start_node = path[0]
    next_node= None
    sub = []

    #visit each edge and each node of each edge
    for edge in graph:
        node1, node2 = edge
        if start_node in edge:
                if node1 == start_node:
                    next_node = node2
                else:
                    next_node = node1
                if not visited(next_node, path):
                        # neighbor node not on path yet
                        sub = [next_node]
                        sub.extend(path)
                        # explore extended path
                        findNewCycles(sub);
                elif len(path) > 2  and next_node == path[-1]:
                        # cycle found
                        p = rotate_to_smallest(path);
                        inv = invert(p)
                        if isNew(p) and isNew(inv):
                            cycles.append(p)

def invert(path):
    return rotate_to_smallest(path[::-1])

#  rotate cycle path such that it begins with the smallest node
def rotate_to_smallest(path):
    n = path.index(min(path))
    return path[n:]+path[:n]

def isNew(path):
    return not path in cycles

def visited(node, path):
    return node in path

main()
于 2013-05-15T06:53:59.450 回答
34

以下是基于深度优先搜索的 C#(和 Java,请参见答案末尾)的演示实现。

外循环扫描图的所有节点并从每个节点开始搜索。节点邻居(根据边列表)被添加到循环路径中。如果不能添加更多未访问的邻居,则递归结束。如果路径长于两个节点并且下一个邻居是路径的起点,则找到一个新的循环。为了避免重复循环,循环通过将最小节点旋转到开始来标准化。倒序循环也被考虑在内。

这只是一个幼稚的实现。经典论文是:Donald B. Johnson。找到有向图的所有基本电路。SIAM J. 计算机,4(1):77–84,1975。

可以在这里找到最近对现代算法的调查

using System;
using System.Collections.Generic;

namespace akCyclesInUndirectedGraphs
{
    class Program
    {
        //  Graph modelled as list of edges
        static int[,] graph =
            {
                {1, 2}, {1, 3}, {1, 4}, {2, 3},
                {3, 4}, {2, 6}, {4, 6}, {7, 8},
                {8, 9}, {9, 7}
            };

        static List<int[]> cycles = new List<int[]>();

        static void Main(string[] args)
        {
            for (int i = 0; i < graph.GetLength(0); i++)
                for (int j = 0; j < graph.GetLength(1); j++)
                {
                    findNewCycles(new int[] {graph[i, j]});
                }

            foreach (int[] cy in cycles)
            {
                string s = "" + cy[0];

                for (int i = 1; i < cy.Length; i++)
                    s += "," + cy[i];

                Console.WriteLine(s);
            }
        }

        static void findNewCycles(int[] path)
        {
                int n = path[0];
                int x;
                int[] sub = new int[path.Length + 1];

                for (int i = 0; i < graph.GetLength(0); i++)
                    for (int y = 0; y <= 1; y++)
                        if (graph[i, y] == n)
                        //  edge referes to our current node
                        {
                            x = graph[i, (y + 1) % 2];
                            if (!visited(x, path))
                            //  neighbor node not on path yet
                            {
                                sub[0] = x;
                                Array.Copy(path, 0, sub, 1, path.Length);
                                //  explore extended path
                                findNewCycles(sub);
                            }
                            else if ((path.Length > 2) && (x == path[path.Length - 1]))
                            //  cycle found
                            {
                                int[] p = normalize(path);
                                int[] inv = invert(p);
                                if (isNew(p) && isNew(inv))
                                    cycles.Add(p);
                            }
                        }
        }

        static bool equals(int[] a, int[] b)
        {
            bool ret = (a[0] == b[0]) && (a.Length == b.Length);

            for (int i = 1; ret && (i < a.Length); i++)
                if (a[i] != b[i])
                {
                    ret = false;
                }

            return ret;
        }

        static int[] invert(int[] path)
        {
            int[] p = new int[path.Length];

            for (int i = 0; i < path.Length; i++)
                p[i] = path[path.Length - 1 - i];

            return normalize(p);
        }

        //  rotate cycle path such that it begins with the smallest node
        static int[] normalize(int[] path)
        {
            int[] p = new int[path.Length];
            int x = smallest(path);
            int n;

            Array.Copy(path, 0, p, 0, path.Length);

            while (p[0] != x)
            {
                n = p[0];
                Array.Copy(p, 1, p, 0, p.Length - 1);
                p[p.Length - 1] = n;
            }

            return p;
        }

        static bool isNew(int[] path)
        {
            bool ret = true;

            foreach(int[] p in cycles)
                if (equals(p, path))
                {
                    ret = false;
                    break;
                }

            return ret;
        }

        static int smallest(int[] path)
        {
            int min = path[0];

            foreach (int p in path)
                if (p < min)
                    min = p;

            return min;
        }

        static bool visited(int n, int[] path)
        {
            bool ret = false;

            foreach (int p in path)
                if (p == n)
                {
                    ret = true;
                    break;
                }

            return ret;
        }
    }
}

演示图的周期:

1,3,2
1,4,3,2
1,4,6,2
1,3,4,6,2
1,4,6,2,3
1,4,3
2,6,4,3
7,9,8

用Java编码的算法:

import java.util.ArrayList;
import java.util.List;

public class GraphCycleFinder {

    //  Graph modeled as list of edges
    static int[][] graph =
        {
            {1, 2}, {1, 3}, {1, 4}, {2, 3},
            {3, 4}, {2, 6}, {4, 6}, {7, 8},
            {8, 9}, {9, 7}
        };

    static List<int[]> cycles = new ArrayList<int[]>();

    /**
     * @param args
     */
    public static void main(String[] args) {

        for (int i = 0; i < graph.length; i++)
            for (int j = 0; j < graph[i].length; j++)
            {
                findNewCycles(new int[] {graph[i][j]});
            }

        for (int[] cy : cycles)
        {
            String s = "" + cy[0];

            for (int i = 1; i < cy.length; i++)
            {
                s += "," + cy[i];
            }

            o(s);
        }

    }

    static void findNewCycles(int[] path)
    {
            int n = path[0];
            int x;
            int[] sub = new int[path.length + 1];

            for (int i = 0; i < graph.length; i++)
                for (int y = 0; y <= 1; y++)
                    if (graph[i][y] == n)
                    //  edge refers to our current node
                    {
                        x = graph[i][(y + 1) % 2];
                        if (!visited(x, path))
                        //  neighbor node not on path yet
                        {
                            sub[0] = x;
                            System.arraycopy(path, 0, sub, 1, path.length);
                            //  explore extended path
                            findNewCycles(sub);
                        }
                        else if ((path.length > 2) && (x == path[path.length - 1]))
                        //  cycle found
                        {
                            int[] p = normalize(path);
                            int[] inv = invert(p);
                            if (isNew(p) && isNew(inv))
                            {
                                cycles.add(p);
                            }
                        }
                    }
    }

    //  check of both arrays have same lengths and contents
    static Boolean equals(int[] a, int[] b)
    {
        Boolean ret = (a[0] == b[0]) && (a.length == b.length);

        for (int i = 1; ret && (i < a.length); i++)
        {
            if (a[i] != b[i])
            {
                ret = false;
            }
        }

        return ret;
    }

    //  create a path array with reversed order
    static int[] invert(int[] path)
    {
        int[] p = new int[path.length];

        for (int i = 0; i < path.length; i++)
        {
            p[i] = path[path.length - 1 - i];
        }

        return normalize(p);
    }

    //  rotate cycle path such that it begins with the smallest node
    static int[] normalize(int[] path)
    {
        int[] p = new int[path.length];
        int x = smallest(path);
        int n;

        System.arraycopy(path, 0, p, 0, path.length);

        while (p[0] != x)
        {
            n = p[0];
            System.arraycopy(p, 1, p, 0, p.length - 1);
            p[p.length - 1] = n;
        }

        return p;
    }

    //  compare path against known cycles
    //  return true, iff path is not a known cycle
    static Boolean isNew(int[] path)
    {
        Boolean ret = true;

        for(int[] p : cycles)
        {
            if (equals(p, path))
            {
                ret = false;
                break;
            }
        }

        return ret;
    }

    static void o(String s)
    {
        System.out.println(s);
    }

    //  return the int of the array which is the smallest
    static int smallest(int[] path)
    {
        int min = path[0];

        for (int p : path)
        {
            if (p < min)
            {
                min = p;
            }
        }

        return min;
    }

    //  check if vertex n is contained in path
    static Boolean visited(int n, int[] path)
    {
        Boolean ret = false;

        for (int p : path)
        {
            if (p == n)
            {
                ret = true;
                break;
            }
        }

        return ret;
    }

}
于 2013-01-02T00:32:39.630 回答
4

这只是这个算法的一个非常蹩脚的 MATLAB 版本,它改编自上面的 python 代码,供任何可能需要它的人使用。

function cycleList = searchCycles(edgeMap)

    tic
    global graph cycles numCycles;
    graph = edgeMap;
    numCycles = 0;
    cycles = {};
    for i = 1:size(graph,1)
        for j = 1:2
            findNewCycles(graph(i,j))
        end
    end
    % print out all found cycles
    for i = 1:size(cycles,2)
        cycles{i}
    end
    % return the result
    cycleList = cycles;
    toc

function findNewCycles(path)

    global graph cycles numCycles;
    startNode = path(1);
    nextNode = nan;
    sub = [];

    % visit each edge and each node of each edge
    for i = 1:size(graph,1)
        node1 = graph(i,1);
        node2 = graph(i,2);
        if node1 == startNode
            nextNode = node2;
        elseif node2 == startNode
            nextNode = node1;
        end
        if ~(visited(nextNode, path))
            % neighbor node not on path yet
            sub = nextNode;
            sub = [sub path];
            % explore extended path
            findNewCycles(sub);
        elseif size(path,2) > 2 && nextNode == path(end)
            % cycle found
            p = rotate_to_smallest(path);
            inv = invert(p);
            if isNew(p) && isNew(inv)
                numCycles = numCycles + 1;
                cycles{numCycles} = p;
            end
        end
    end

function inv = invert(path)
    inv = rotate_to_smallest(path(end:-1:1));

% rotate cycle path such that it begins with the smallest node
function new_path = rotate_to_smallest(path)
    [~,n] = min(path);
    new_path = [path(n:end), path(1:n-1)];

function result = isNew(path)
    global cycles
    result = 1;
    for i = 1:size(cycles,2)
        if size(path,2) == size(cycles{i},2) && all(path == cycles{i})
            result = 0;
            break;
        end
    end

function result = visited(node,path)
    result = 0;
    if isnan(node) && any(isnan(path))
        result = 1;
        return
    end
    for i = 1:size(path,2)
        if node == path(i)
            result = 1;
            break
        end
    end
于 2013-12-28T16:52:18.037 回答
4

这是上面python代码的C++版本:

std::vector< std::vector<vertex_t> > Graph::findAllCycles()
{
    std::vector< std::vector<vertex_t> > cycles;

    std::function<void(std::vector<vertex_t>)> findNewCycles = [&]( std::vector<vertex_t> sub_path )
    {
        auto visisted = []( vertex_t v, const std::vector<vertex_t> & path ){
            return std::find(path.begin(),path.end(),v) != path.end();
        };

        auto rotate_to_smallest = []( std::vector<vertex_t> path ){
            std::rotate(path.begin(), std::min_element(path.begin(), path.end()), path.end());
            return path;
        };

        auto invert = [&]( std::vector<vertex_t> path ){
            std::reverse(path.begin(),path.end());
            return rotate_to_smallest(path);
        };

        auto isNew = [&cycles]( const std::vector<vertex_t> & path ){
            return std::find(cycles.begin(), cycles.end(), path) == cycles.end();
        };

        vertex_t start_node = sub_path[0];
        vertex_t next_node;

        // visit each edge and each node of each edge
        for(auto edge : edges)
        {
            if( edge.has(start_node) )
            {
                vertex_t node1 = edge.v1, node2 = edge.v2;

                if(node1 == start_node)
                    next_node = node2;
                else
                    next_node = node1;

                if( !visisted(next_node, sub_path) )
                {
                    // neighbor node not on path yet
                    std::vector<vertex_t> sub;
                    sub.push_back(next_node);
                    sub.insert(sub.end(), sub_path.begin(), sub_path.end());
                    findNewCycles( sub );
                } 
                else if( sub_path.size() > 2 && next_node == sub_path.back() )
                {
                    // cycle found
                    auto p = rotate_to_smallest(sub_path);
                    auto inv = invert(p);

                    if( isNew(p) && isNew(inv) )
                        cycles.push_back( p );
                }
            }
        }
    };

    for(auto edge : edges)
    {
        findNewCycles( std::vector<vertex_t>(1,edge.v1) );
        findNewCycles( std::vector<vertex_t>(1,edge.v2) );
    }
}
于 2014-08-01T02:46:34.590 回答
4

受@LetterRip 和@Axel Kemper 启发这是Java 的较短版本:

public static int[][] graph =
        {
                {1, 2}, {2, 3}, {3, 4}, {2, 4},
                {3, 5}
        };
public static Set<List<Integer>> cycles = new HashSet<>();

static void findNewCycles(ArrayList<Integer> path) {
    int start = path.get(0);
    int next = -1;
    for (int[] edge : graph) {
        if (start == edge[0] || start == edge[1]) {
            next = (start == edge[0]) ? edge[1] : edge[0];
            if (!path.contains(next)) {
                ArrayList<Integer> newPath = new ArrayList<>();
                newPath.add(next);
                newPath.addAll((path));
                findNewCycles(newPath);
            } else if (path.size() > 2 && next == path.get(path.size() - 1)) {
                List<Integer> normalized = new ArrayList<>(path);
                Collections.sort(normalized);
                cycles.add(normalized);
            }
        }
    }
}

public static void detectCycle() {
    for (int i = 0; i < graph.length; i++)
        for (int j = 0; j < graph[i].length; j++) {
            ArrayList<Integer> path = new ArrayList<>();
            path.add(graph[i][j]);
            findNewCycles(path);
        }
    for (List<Integer> c : cycles) {
        System.out.println(c);
    }
}
于 2018-05-27T08:15:44.217 回答
1

这是上面python代码的vb .net版本:

Module Module1
'  Graph modelled as list of edges
Public graph As Integer(,) = {{{1, 2}, {1, 3}, {1, 4}, {2, 3},
        {3, 4}, {2, 6}, {4, 6}, {7, 8},
        {8, 9}, {9, 7}}

Public cycles As New List(Of Integer())()
Sub Main()
    For i As Integer = 0 To graph.GetLength(0) - 1
        For j As Integer = 0 To graph.GetLength(1) - 1
            findNewCycles(New Integer() {graph(i, j)})
        Next
    Next

    For Each cy As Integer() In cycles
        Dim s As String
        s = cy(0)
        For i As Integer = 1 To cy.Length - 1
            s = s & "," & cy(i)
        Next

        Console.WriteLine(s)
        Debug.Print(s)
    Next

End Sub
Private Sub findNewCycles(path As Integer())
    Dim n As Integer = path(0)
    Dim x As Integer
    Dim [sub] As Integer() = New Integer(path.Length) {}

    For i As Integer = 0 To graph.GetLength(0) - 1
        For y As Integer = 0 To 1
            If graph(i, y) = n Then
                '  edge referes to our current node
                x = graph(i, (y + 1) Mod 2)
                If Not visited(x, path) Then
                    '  neighbor node not on path yet
                    [sub](0) = x
                    Array.Copy(path, 0, [sub], 1, path.Length)
                    '  explore extended path
                    findNewCycles([sub])
                ElseIf (path.Length > 2) AndAlso (x = path(path.Length - 1)) Then
                    '  cycle found
                    Dim p As Integer() = normalize(path)
                    Dim inv As Integer() = invert(p)
                    If isNew(p) AndAlso isNew(inv) Then
                        cycles.Add(p)
                    End If
                End If
            End If
        Next
    Next
End Sub

Private Function equals(a As Integer(), b As Integer()) As Boolean
    Dim ret As Boolean = (a(0) = b(0)) AndAlso (a.Length = b.Length)

    Dim i As Integer = 1
    While ret AndAlso (i < a.Length)
        If a(i) <> b(i) Then
            ret = False
        End If
        i += 1
    End While

    Return ret
End Function

Private Function invert(path As Integer()) As Integer()
    Dim p As Integer() = New Integer(path.Length - 1) {}

    For i As Integer = 0 To path.Length - 1
        p(i) = path(path.Length - 1 - i)
    Next

    Return normalize(p)
End Function

'  rotate cycle path such that it begins with the smallest node
Private Function normalize(path As Integer()) As Integer()
    Dim p As Integer() = New Integer(path.Length - 1) {}
    Dim x As Integer = smallest(path)
    Dim n As Integer

    Array.Copy(path, 0, p, 0, path.Length)

    While p(0) <> x
        n = p(0)
        Array.Copy(p, 1, p, 0, p.Length - 1)
        p(p.Length - 1) = n
    End While

    Return p
End Function

Private Function isNew(path As Integer()) As Boolean
    Dim ret As Boolean = True

    For Each p As Integer() In cycles
        If equals(p, path) Then
            ret = False
            Exit For
        End If
    Next

    Return ret
End Function

Private Function smallest(path As Integer()) As Integer
    Dim min As Integer = path(0)

    For Each p As Integer In path
        If p < min Then
            min = p
        End If
    Next

    Return min
End Function

Private Function visited(n As Integer, path As Integer()) As Boolean
    Dim ret As Boolean = False

    For Each p As Integer In path
        If p = n Then
            ret = True
            Exit For
        End If
    Next

    Return ret
End Function

端模块

于 2015-05-25T07:52:35.733 回答
1

这是python代码的节点版本。

const graph = [[1, 2], [1, 3], [1, 4], [2, 3], [3, 4], [2, 6], [4, 6], [8, 7], [8, 9], [9, 7]]
let cycles = []

function main() {
  for (const edge of graph) {
    for (const node of edge) {
      findNewCycles([node])
    }
  }
  for (cy of cycles) {
    console.log(cy.join(','))
  }
}

function findNewCycles(path) {
  const start_node = path[0]
  let next_node = null
  let sub = []

  // visit each edge and each node of each edge
  for (const edge of graph) {
    const [node1, node2] = edge
    if (edge.includes(start_node)) {
      next_node = node1 === start_node ? node2 : node1
    }
    if (notVisited(next_node, path)) {
      // eighbor node not on path yet
      sub = [next_node].concat(path)
      // explore extended path
      findNewCycles(sub)
    } else if (path.length > 2 && next_node === path[path.length - 1]) {
      // cycle found
      const p = rotateToSmallest(path)
      const inv = invert(p)
      if (isNew(p) && isNew(inv)) {
        cycles.push(p)
      }
    }
  }
}

function invert(path) {
  return rotateToSmallest([...path].reverse())
}

// rotate cycle path such that it begins with the smallest node
function rotateToSmallest(path) {
  const n = path.indexOf(Math.min(...path))
  return path.slice(n).concat(path.slice(0, n))
}

function isNew(path) {
  const p = JSON.stringify(path)
  for (const cycle of cycles) {
    if (p === JSON.stringify(cycle)) {
      return false
    }
  }
  return true
}

function notVisited(node, path) {
  const n = JSON.stringify(node)
  for (const p of path) {
    if (n === JSON.stringify(p)) {
      return false
    }
  }
  return true
}

main()
于 2018-01-29T07:42:05.493 回答
0

这不是答案!

@尼古拉·奥格尼亚诺

1. 试图理解我们应该如何用简单循环生成组合循环

我试图理解你提到的

您还需要通过检查序列的按位与是否不全为零来检查 2 个周期是否有一些共同的边缘。否则 XOR 的结果将是 2 个不相交的循环,而不是一个新的简单循环。

我想了解我们应该如何处理如下图:

0-----2-----4
|    /|    /
|   / |   /
|  /  |  /
| /   | /
|/    |/
1-----3

假设基本/简单循环是:

0 1 2
1 2 3
2 3 4

显然,如果我使用以下按位XORand AND,它将错过循环 0 1 3 4 2

bitset<MAX> ComputeCombinedCycleBits(const vector<bitset<MAX>>& bsets) {
    bitset<MAX> bsCombo, bsCommonEdgeCheck; bsCommonEdgeCheck.set();
    
    for (const auto& bs : bsets)
        bsCombo ^= bs, bsCommonEdgeCheck &= bs;
    if (bsCommonEdgeCheck.none()) bsCombo.reset();
    return bsCombo;
}

我认为主要问题在这里bsCommonEdgeCheck &= bs?如果有 3 个以上的简单循环组成联合循环,我们应该使用什么?

2.试图理解我们如何得到联合循环的顺序

例如,使用下图:

0-----1
|\   /|
| \ / |
|  X  |
| / \ |
|/   \| 
3-----2 

假设基本/简单循环是:

0 1 2
0 2 3
0 1 3

使用按位异或后,我们完全失去了简单循环的顺序,如何获得组合循环的节点顺序?

于 2020-07-12T07:40:05.293 回答
0

上面的循环查找器似乎有一些问题。C# 版本无法找到一些循环。我的图表是:

  {2,8},{4,8},{5,8},{1,9},{3,9},{4,9},{5,9},{6,9},{1,10},
  {4,10},{5,10},{6,10},{7,10},{1,11},{4,11},{6,11},{7,11},
  {1,12},{2,12},{3,12},{5,12},{6,12},{2,13},{3,13},{4,13},
  {6,13},{7,13},{2,14},{5,14},{7,14}

例如,循环:1-9-3-12-5-10未找到。我也尝试了 C++ 版本,它返回的周期数非常大(数千万),这显然是错误的。很可能,它与周期不匹配。

对不起,我有点紧张,我没有进一步调查。我根据 Nikolay Ognyanov 的帖子编写了自己的版本(非常感谢您的帖子)。对于上面的图表,我的版本返回 8833 个周期,我正在尝试验证它是否正确。C# 版本返回 8397 个周期。

于 2016-12-28T18:24:26.083 回答
-1

Matlab 版本遗漏了一些东西,函数 findNewCycles(path) 应该是:

函数 findNewCycles(路径)

global graph cycles numCycles;
startNode = path(1);
nextNode = nan;
sub = [];

% visit each edge and each node of each edge
for i = 1:size(graph,1)
    node1 = graph(i,1);
    node2 = graph(i,2);
    if (node1 == startNode) || (node2==startNode) %% this if is required
        if node1 == startNode
            nextNode = node2;
        elseif node2 == startNode
            nextNode = node1;
        end
        if ~(visited(nextNode, path))
            % neighbor node not on path yet
            sub = nextNode;
            sub = [sub path];
            % explore extended path
            findNewCycles(sub);
        elseif size(path,2) > 2 && nextNode == path(end)
            % cycle found
            p = rotate_to_smallest(path);
            inv = invert(p);
            if isNew(p) && isNew(inv)
                numCycles = numCycles + 1;
                cycles{numCycles} = p;
            end
        end
    end
end
于 2014-06-11T16:16:32.447 回答