481

我正在使用一个完全异步的 API 客户端,也就是说,每个操作要么返回Task要么Task<T>,例如:

static async Task DoSomething(int siteId, int postId, IBlogClient client)
{
    await client.DeletePost(siteId, postId); // call API client
    Console.WriteLine("Deleted post {0}.", siteId);
}

使用 C# 5 async/await 运算符,启动多个任务并等待它们全部完成的正确/最有效的方法是什么:

int[] ids = new[] { 1, 2, 3, 4, 5 };
Parallel.ForEach(ids, i => DoSomething(1, i, blogClient).Wait());

或者:

int[] ids = new[] { 1, 2, 3, 4, 5 };
Task.WaitAll(ids.Select(i => DoSomething(1, i, blogClient)).ToArray());

由于 API 客户端在内部使用 HttpClient,我希望这会立即发出 5 个 HTTP 请求,并在每个请求完成时写入控制台。

4

7 回答 7

669
int[] ids = new[] { 1, 2, 3, 4, 5 };
Parallel.ForEach(ids, i => DoSomething(1, i, blogClient).Wait());

尽管您与上述代码并行运行这些操作,但此代码会阻止每个操作运行的每个线程。例如,如果网络调用需要 2 秒,则每个线程会挂起 2 秒,除了等待之外什么都不做。

int[] ids = new[] { 1, 2, 3, 4, 5 };
Task.WaitAll(ids.Select(i => DoSomething(1, i, blogClient)).ToArray());

另一方面,上面的代码WaitAll也阻塞了线程,并且在操作结束之前,您的线程将无法自由处理任何其他工作。

推荐方法

我更喜欢WhenAll哪个会以并行方式异步执行您的操作。

public async Task DoWork() {

    int[] ids = new[] { 1, 2, 3, 4, 5 };
    await Task.WhenAll(ids.Select(i => DoSomething(1, i, blogClient)));
}

事实上,在上述情况下,你甚至不需要await,你可以直接从方法中返回,因为你没有任何延续:

public Task DoWork() 
{
    int[] ids = new[] { 1, 2, 3, 4, 5 };
    return Task.WhenAll(ids.Select(i => DoSomething(1, i, blogClient)));
}

为了支持这一点,这里有一篇详细的博客文章,介绍了所有替代方案及其优缺点:如何以及在何处使用 ASP.NET Web API 进行并发异步 I/O

于 2012-09-09T11:35:03.193 回答
63

我很想知道问题中提供的方法的结果以及接受的答案,所以我对其进行了测试。

这是代码:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading;
using System.Threading.Tasks;

namespace AsyncTest
{
    class Program
    {
        class Worker
        {
            public int Id;
            public int SleepTimeout;

            public async Task DoWork(DateTime testStart)
            {
                var workerStart = DateTime.Now;
                Console.WriteLine("Worker {0} started on thread {1}, beginning {2} seconds after test start.",
                    Id, Thread.CurrentThread.ManagedThreadId, (workerStart-testStart).TotalSeconds.ToString("F2"));
                await Task.Run(() => Thread.Sleep(SleepTimeout));
                var workerEnd = DateTime.Now;
                Console.WriteLine("Worker {0} stopped; the worker took {1} seconds, and it finished {2} seconds after the test start.",
                   Id, (workerEnd-workerStart).TotalSeconds.ToString("F2"), (workerEnd-testStart).TotalSeconds.ToString("F2"));
            }
        }

        static void Main(string[] args)
        {
            var workers = new List<Worker>
            {
                new Worker { Id = 1, SleepTimeout = 1000 },
                new Worker { Id = 2, SleepTimeout = 2000 },
                new Worker { Id = 3, SleepTimeout = 3000 },
                new Worker { Id = 4, SleepTimeout = 4000 },
                new Worker { Id = 5, SleepTimeout = 5000 },
            };

            var startTime = DateTime.Now;
            Console.WriteLine("Starting test: Parallel.ForEach...");
            PerformTest_ParallelForEach(workers, startTime);
            var endTime = DateTime.Now;
            Console.WriteLine("Test finished after {0} seconds.\n",
                (endTime - startTime).TotalSeconds.ToString("F2"));

            startTime = DateTime.Now;
            Console.WriteLine("Starting test: Task.WaitAll...");
            PerformTest_TaskWaitAll(workers, startTime);
            endTime = DateTime.Now;
            Console.WriteLine("Test finished after {0} seconds.\n",
                (endTime - startTime).TotalSeconds.ToString("F2"));

            startTime = DateTime.Now;
            Console.WriteLine("Starting test: Task.WhenAll...");
            var task = PerformTest_TaskWhenAll(workers, startTime);
            task.Wait();
            endTime = DateTime.Now;
            Console.WriteLine("Test finished after {0} seconds.\n",
                (endTime - startTime).TotalSeconds.ToString("F2"));

            Console.ReadKey();
        }

        static void PerformTest_ParallelForEach(List<Worker> workers, DateTime testStart)
        {
            Parallel.ForEach(workers, worker => worker.DoWork(testStart).Wait());
        }

        static void PerformTest_TaskWaitAll(List<Worker> workers, DateTime testStart)
        {
            Task.WaitAll(workers.Select(worker => worker.DoWork(testStart)).ToArray());
        }

        static Task PerformTest_TaskWhenAll(List<Worker> workers, DateTime testStart)
        {
            return Task.WhenAll(workers.Select(worker => worker.DoWork(testStart)));
        }
    }
}

结果输出:

Starting test: Parallel.ForEach...
Worker 1 started on thread 1, beginning 0.21 seconds after test start.
Worker 4 started on thread 5, beginning 0.21 seconds after test start.
Worker 2 started on thread 3, beginning 0.21 seconds after test start.
Worker 5 started on thread 6, beginning 0.21 seconds after test start.
Worker 3 started on thread 4, beginning 0.21 seconds after test start.
Worker 1 stopped; the worker took 1.90 seconds, and it finished 2.11 seconds after the test start.
Worker 2 stopped; the worker took 3.89 seconds, and it finished 4.10 seconds after the test start.
Worker 3 stopped; the worker took 5.89 seconds, and it finished 6.10 seconds after the test start.
Worker 4 stopped; the worker took 5.90 seconds, and it finished 6.11 seconds after the test start.
Worker 5 stopped; the worker took 8.89 seconds, and it finished 9.10 seconds after the test start.
Test finished after 9.10 seconds.

Starting test: Task.WaitAll...
Worker 1 started on thread 1, beginning 0.01 seconds after test start.
Worker 2 started on thread 1, beginning 0.01 seconds after test start.
Worker 3 started on thread 1, beginning 0.01 seconds after test start.
Worker 4 started on thread 1, beginning 0.01 seconds after test start.
Worker 5 started on thread 1, beginning 0.01 seconds after test start.
Worker 1 stopped; the worker took 1.00 seconds, and it finished 1.01 seconds after the test start.
Worker 2 stopped; the worker took 2.00 seconds, and it finished 2.01 seconds after the test start.
Worker 3 stopped; the worker took 3.00 seconds, and it finished 3.01 seconds after the test start.
Worker 4 stopped; the worker took 4.00 seconds, and it finished 4.01 seconds after the test start.
Worker 5 stopped; the worker took 5.00 seconds, and it finished 5.01 seconds after the test start.
Test finished after 5.01 seconds.

Starting test: Task.WhenAll...
Worker 1 started on thread 1, beginning 0.00 seconds after test start.
Worker 2 started on thread 1, beginning 0.00 seconds after test start.
Worker 3 started on thread 1, beginning 0.00 seconds after test start.
Worker 4 started on thread 1, beginning 0.00 seconds after test start.
Worker 5 started on thread 1, beginning 0.00 seconds after test start.
Worker 1 stopped; the worker took 1.00 seconds, and it finished 1.00 seconds after the test start.
Worker 2 stopped; the worker took 2.00 seconds, and it finished 2.00 seconds after the test start.
Worker 3 stopped; the worker took 3.00 seconds, and it finished 3.00 seconds after the test start.
Worker 4 stopped; the worker took 4.00 seconds, and it finished 4.00 seconds after the test start.
Worker 5 stopped; the worker took 5.00 seconds, and it finished 5.00 seconds after the test start.
Test finished after 5.00 seconds.
于 2015-09-30T05:25:02.317 回答
26

由于您调用的 API 是异步的,因此Parallel.ForEach版本没有多大意义。您不应该.Wait在该WaitAll版本中使用,因为这会失去并行性如果调用者是异步的,另一种选择是Task.WhenAll在执行后使用SelectToArray生成任务数组。第二种选择是使用 Rx 2.0

于 2012-09-09T11:51:07.360 回答
22

您可以使用Task.WhenAll可以传递n 个任务的功能;Task.WhenAll当您传递的所有任务完成时,将返回一个运行完成的任务Task.WhenAll。您必须异步等待,Task.WhenAll以免阻塞 UI 线程:

   public async Task DoSomeThing() {
       
       Task[] tasks = new Task[numTasks];
       for(int i = 0; i < numTask; i++)
       {
          tasks[i] = CallSomeAsync();
       }
       await Task.WhenAll(tasks);
       // code that'll execute on UI thread
   }
于 2018-01-07T19:39:31.810 回答
11

Parallel.ForEach需要一个用户定义的工作人员列表和一个非异步 Action来与每个工作人员一起执行。

Task.WaitAll并且Task.WhenAll需要 a List<Task>,根据定义,它们是异步的。

我发现RiaanDP回复对于理解差异非常有用,但需要对Parallel.ForEach. 没有足够的声誉来回应他的评论,因此我自己的回应。

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading;
using System.Threading.Tasks;

namespace AsyncTest
{
    class Program
    {
        class Worker
        {
            public int Id;
            public int SleepTimeout;

            public void DoWork(DateTime testStart)
            {
                var workerStart = DateTime.Now;
                Console.WriteLine("Worker {0} started on thread {1}, beginning {2} seconds after test start.",
                    Id, Thread.CurrentThread.ManagedThreadId, (workerStart - testStart).TotalSeconds.ToString("F2"));
                Thread.Sleep(SleepTimeout);
                var workerEnd = DateTime.Now;
                Console.WriteLine("Worker {0} stopped; the worker took {1} seconds, and it finished {2} seconds after the test start.",
                   Id, (workerEnd - workerStart).TotalSeconds.ToString("F2"), (workerEnd - testStart).TotalSeconds.ToString("F2"));
            }

            public async Task DoWorkAsync(DateTime testStart)
            {
                var workerStart = DateTime.Now;
                Console.WriteLine("Worker {0} started on thread {1}, beginning {2} seconds after test start.",
                    Id, Thread.CurrentThread.ManagedThreadId, (workerStart - testStart).TotalSeconds.ToString("F2"));
                await Task.Run(() => Thread.Sleep(SleepTimeout));
                var workerEnd = DateTime.Now;
                Console.WriteLine("Worker {0} stopped; the worker took {1} seconds, and it finished {2} seconds after the test start.",
                   Id, (workerEnd - workerStart).TotalSeconds.ToString("F2"), (workerEnd - testStart).TotalSeconds.ToString("F2"));
            }
        }

        static void Main(string[] args)
        {
            var workers = new List<Worker>
            {
                new Worker { Id = 1, SleepTimeout = 1000 },
                new Worker { Id = 2, SleepTimeout = 2000 },
                new Worker { Id = 3, SleepTimeout = 3000 },
                new Worker { Id = 4, SleepTimeout = 4000 },
                new Worker { Id = 5, SleepTimeout = 5000 },
            };

            var startTime = DateTime.Now;
            Console.WriteLine("Starting test: Parallel.ForEach...");
            PerformTest_ParallelForEach(workers, startTime);
            var endTime = DateTime.Now;
            Console.WriteLine("Test finished after {0} seconds.\n",
                (endTime - startTime).TotalSeconds.ToString("F2"));

            startTime = DateTime.Now;
            Console.WriteLine("Starting test: Task.WaitAll...");
            PerformTest_TaskWaitAll(workers, startTime);
            endTime = DateTime.Now;
            Console.WriteLine("Test finished after {0} seconds.\n",
                (endTime - startTime).TotalSeconds.ToString("F2"));

            startTime = DateTime.Now;
            Console.WriteLine("Starting test: Task.WhenAll...");
            var task = PerformTest_TaskWhenAll(workers, startTime);
            task.Wait();
            endTime = DateTime.Now;
            Console.WriteLine("Test finished after {0} seconds.\n",
                (endTime - startTime).TotalSeconds.ToString("F2"));

            Console.ReadKey();
        }

        static void PerformTest_ParallelForEach(List<Worker> workers, DateTime testStart)
        {
            Parallel.ForEach(workers, worker => worker.DoWork(testStart));
        }

        static void PerformTest_TaskWaitAll(List<Worker> workers, DateTime testStart)
        {
            Task.WaitAll(workers.Select(worker => worker.DoWorkAsync(testStart)).ToArray());
        }

        static Task PerformTest_TaskWhenAll(List<Worker> workers, DateTime testStart)
        {
            return Task.WhenAll(workers.Select(worker => worker.DoWorkAsync(testStart)));
        }
    }
}

结果输出如下。执行时间是可比的。我在我的计算机进行每周一次的防病毒扫描时运行了这个测试。改变测试的顺序确实改变了它们的执行时间。

Starting test: Parallel.ForEach...
Worker 1 started on thread 9, beginning 0.02 seconds after test start.
Worker 2 started on thread 10, beginning 0.02 seconds after test start.
Worker 3 started on thread 11, beginning 0.02 seconds after test start.
Worker 4 started on thread 13, beginning 0.03 seconds after test start.
Worker 5 started on thread 14, beginning 0.03 seconds after test start.
Worker 1 stopped; the worker took 1.00 seconds, and it finished 1.02 seconds after the test start.
Worker 2 stopped; the worker took 2.00 seconds, and it finished 2.02 seconds after the test start.
Worker 3 stopped; the worker took 3.00 seconds, and it finished 3.03 seconds after the test start.
Worker 4 stopped; the worker took 4.00 seconds, and it finished 4.03 seconds after the test start.
Worker 5 stopped; the worker took 5.00 seconds, and it finished 5.03 seconds after the test start.
Test finished after 5.03 seconds.

Starting test: Task.WaitAll...
Worker 1 started on thread 9, beginning 0.00 seconds after test start.
Worker 2 started on thread 9, beginning 0.00 seconds after test start.
Worker 3 started on thread 9, beginning 0.00 seconds after test start.
Worker 4 started on thread 9, beginning 0.00 seconds after test start.
Worker 5 started on thread 9, beginning 0.01 seconds after test start.
Worker 1 stopped; the worker took 1.00 seconds, and it finished 1.01 seconds after the test start.
Worker 2 stopped; the worker took 2.00 seconds, and it finished 2.01 seconds after the test start.
Worker 3 stopped; the worker took 3.00 seconds, and it finished 3.01 seconds after the test start.
Worker 4 stopped; the worker took 4.00 seconds, and it finished 4.01 seconds after the test start.
Worker 5 stopped; the worker took 5.00 seconds, and it finished 5.01 seconds after the test start.
Test finished after 5.01 seconds.

Starting test: Task.WhenAll...
Worker 1 started on thread 9, beginning 0.00 seconds after test start.
Worker 2 started on thread 9, beginning 0.00 seconds after test start.
Worker 3 started on thread 9, beginning 0.00 seconds after test start.
Worker 4 started on thread 9, beginning 0.00 seconds after test start.
Worker 5 started on thread 9, beginning 0.00 seconds after test start.
Worker 1 stopped; the worker took 1.00 seconds, and it finished 1.00 seconds after the test start.
Worker 2 stopped; the worker took 2.00 seconds, and it finished 2.00 seconds after the test start.
Worker 3 stopped; the worker took 3.00 seconds, and it finished 3.00 seconds after the test start.
Worker 4 stopped; the worker took 4.00 seconds, and it finished 4.00 seconds after the test start.
Worker 5 stopped; the worker took 5.00 seconds, and it finished 5.01 seconds after the test start.
Test finished after 5.01 seconds.
于 2018-09-14T19:28:28.313 回答
2

所有的答案似乎都很复杂。

以下代码对我有用,只需将常规 Task.Run() 放入数组中并使用 Task.WhenAll() 调用:

等待Task.WhenAll(新任务[] {
                Task.Run(() => Func1(args)),
                Task.Run(() => Func2(args))
            });
于 2022-01-19T22:57:39.253 回答
1

我只想补充上面所有的好答案,如果你写了一个库,那么使用它ConfigureAwait(false) 并获得更好的性能是一个很好的做法,如此所述。

所以这个片段似乎更好:

 public static async Task DoWork() 
 {
     int[] ids = new[] { 1, 2, 3, 4, 5 };
     await Task.WhenAll(ids.Select(i => DoSomething(1, i))).ConfigureAwait(false);
 }

一个完整的小提琴链接在这里

于 2020-07-12T07:26:02.123 回答