[编辑]
虽然下面的解决方案有效,但可以做得更好。这是一个名称更好、性能更好的版本:
from itertools import product
from PIL import Image, ImageDraw
def closed_regions(image, test):
"""
Return all closed regions in image who's pixels satisfy test.
"""
pixel = image.load()
xs, ys = map(xrange, image.size)
neighbors = dict((xy, set([xy])) for xy in product(xs, ys) if test(pixel[xy]))
for a, b in neighbors:
for cd in (a + 1, b), (a, b + 1):
if cd in neighbors:
neighbors[a, b].add(cd)
neighbors[cd].add((a, b))
seen = set()
def component(node, neighbors=neighbors, seen=seen, see=seen.add):
todo = set([node])
next_todo = todo.pop
while todo:
node = next_todo()
see(node)
todo |= neighbors[node] - seen
yield node
return (set(component(node)) for node in neighbors if node not in seen)
def boundingbox(coordinates):
"""
Return the bounding box that contains all coordinates.
"""
xs, ys = zip(*coordinates)
return min(xs), min(ys), max(xs), max(ys)
def is_black_enough(pixel):
r, g, b = pixel
return r < 10 and g < 10 and b < 10
if __name__ == '__main__':
image = Image.open('some_image.jpg')
draw = ImageDraw.Draw(image)
for rect in disjoint_areas(image, is_black_enough):
draw.rectangle(boundingbox(region), outline=(255, 0, 0))
image.show()
与disjoint_areas()
下面不同,closed_regions()
返回像素坐标集而不是它们的边界框。
此外,如果我们使用泛洪算法而不是连接组件算法,我们可以让它更简单,速度大约是原来的两倍:
from itertools import chain, product
from PIL import Image, ImageDraw
flatten = chain.from_iterable
def closed_regions(image, test):
"""
Return all closed regions in image who's pixel satisfy test.
"""
pixel = image.load()
xs, ys = map(xrange, image.size)
todo = set(xy for xy in product(xs, ys) if test(pixel[xy]))
while todo:
region = set()
edge = set([todo.pop()])
while edge:
region |= edge
todo -= edge
edge = todo.intersection(
flatten(((x - 1, y), (x, y - 1), (x + 1, y), (x, y + 1)) for x, y in edge))
yield region
# rest like above
它的灵感来自Eric S. Raymond 的 Floodfill 版本。
[/编辑]
一个人可能会使用floodfill,但我喜欢这个:
from collections import defaultdict
from PIL import Image, ImageDraw
def connected_components(edges):
"""
Given a graph represented by edges (i.e. pairs of nodes), generate its
connected components as sets of nodes.
Time complexity is linear with respect to the number of edges.
"""
neighbors = defaultdict(set)
for a, b in edges:
neighbors[a].add(b)
neighbors[b].add(a)
seen = set()
def component(node, neighbors=neighbors, seen=seen, see=seen.add):
unseen = set([node])
next_unseen = unseen.pop
while unseen:
node = next_unseen()
see(node)
unseen |= neighbors[node] - seen
yield node
return (set(component(node)) for node in neighbors if node not in seen)
def matching_pixels(image, test):
"""
Generate all pixel coordinates where pixel satisfies test.
"""
width, height = image.size
pixels = image.load()
for x in xrange(width):
for y in xrange(height):
if test(pixels[x, y]):
yield x, y
def make_edges(coordinates):
"""
Generate all pairs of neighboring pixel coordinates.
"""
coordinates = set(coordinates)
for x, y in coordinates:
if (x - 1, y - 1) in coordinates:
yield (x, y), (x - 1, y - 1)
if (x, y - 1) in coordinates:
yield (x, y), (x, y - 1)
if (x + 1, y - 1) in coordinates:
yield (x, y), (x + 1, y - 1)
if (x - 1, y) in coordinates:
yield (x, y), (x - 1, y)
yield (x, y), (x, y)
def boundingbox(coordinates):
"""
Return the bounding box of all coordinates.
"""
xs, ys = zip(*coordinates)
return min(xs), min(ys), max(xs), max(ys)
def disjoint_areas(image, test):
"""
Return the bounding boxes of all non-consecutive areas
who's pixels satisfy test.
"""
for each in connected_components(make_edges(matching_pixels(image, test))):
yield boundingbox(each)
def is_black_enough(pixel):
r, g, b = pixel
return r < 10 and g < 10 and b < 10
if __name__ == '__main__':
image = Image.open('some_image.jpg')
draw = ImageDraw.Draw(image)
for rect in disjoint_areas(image, is_black_enough):
draw.rectangle(rect, outline=(255, 0, 0))
image.show()
在这里,同时满足的相邻像素对is_black_enough()
被解释为图中的边。此外,每个像素都被视为自己的邻居。由于这种重新解释,我们可以将连通分量算法用于图,这很容易实现。结果是所有像素满足的区域的边界框的序列is_black_enough()
。