我需要计算数字 N 的除数总数(而不关心除数的值是什么),并在所有此类数字 N 的 40-80 次操作内进行计算。我该怎么做?这不是一个家庭作业问题。我尝试了Pollard 的 Rho算法,但结果对我的目的来说太慢了。这是我在python中的代码。如果可能的话,我怎样才能提高它的性能?
def is_prime(n):
if n < 2:
return False
ps = [2,3,5,7,11,13,17,19,23,29,31,37,41,
43,47,53,59,61,67,71,73,79,83,89,97]
def is_spsp(n, a):
d, s = n-1, 0
while d%2 == 0:
d /= 2; s += 1
t = pow(int(a),int(d),int(n))
if t == 1:
return True
while s > 0:
if t == n-1:
return True
t = (t*t) % n
s -= 1
return False
if n in ps: return True
for p in ps:
if not is_spsp(n,p):
return False
return True
def gcd(a,b):
while b: a, b = b, a%b
return abs(a)
def rho_factors(n, limit=100):
def gcd(a,b):
while b: a, b = b, a%b
return abs(a)
def rho_factor(n, c, limit):
f = lambda x: (x*x+c) % n
t, h, d = 2, 2, 1
while d == 1:
if limit == 0:
raise OverflowError('limit exceeded')
t = f(t); h = f(f(h)); d = gcd(t-h, n)
if d == n:
return rho_factor(n, c+1, limit)
if is_prime(d):
return d
return rho_factor(d, c+1, limit)
if -1 <= n <= 1: return [n]
if n < -1: return [-1] + rho_factors(-n, limit)
fs = []
while n % 2 == 0:
n = n // 2; fs = fs + [2]
if n == 1: return fs
while not is_prime(n):
f = rho_factor(n, 1, limit)
n = int(n / f)
fs = fs + [f]
return sorted(fs + [n])
def divs(n):
if(n==1):
return 1
ndiv=1
f=rho_factors(n)
l=len(f)
#print(f)
c=1
for x in range(1,l):
#print(f[x])
if(f[x]==f[x-1]):
c=c+1
else:
ndiv=ndiv*(c+1)
c=1
# print ("C",c,"ndiv",ndiv)
ndiv=ndiv*(c+1)
return ndiv