0

可能重复:
多个对象以某种方式相互干扰[原始版本]

(注意:几个小时前我发布了一个类似的问题,但措辞和解释都很糟糕,所以这是一个更清晰的重新提交)

你好,

我有一个神经网络 (NN),它在应用于单个数据集时效果很好。但是,如果我想在一组数据上运行 NN,然后创建一个新的 NN 实例以在不同的数据集(甚至是同一组数据)上运行,那么新实例将产生完全不正确的预测.

例如,在 XOR 模式上进行训练:

    test=[[0,0],[0,1],[1,0],[1,1]]
    data = [[[0,0], [0]],[[0,1], [0]],[[1,0], [0]],[[1,1], [1]]]

    n = NN(2, 3, 1) # Create a neural network with 2 input, 3 hidden and 1 output nodes
    n.train(data,500,0.5,0) # Train it for 500 iterations with learning rate 0.5 and momentum 0

    prediction = np.zeros((len(test)))
    for row in range(len(test)):
        prediction[row] = n.runNetwork(test[row])[0]

    print prediction

    #
    # Now do the same thing again but with a new instance and new version of the data.
    #

    test2=[[0,0],[0,1],[1,0],[1,1]]
    data2 = [[[0,0], [0]],[[0,1], [0]],[[1,0], [0]],[[1,1], [1]]]

    p = NN(2, 3, 1)
    p.train(data2,500,0.5,0)

    prediction2 = np.zeros((len(test2)))
    for row in range(len(test2)):
        prediction2[row] = p.runNetwork(test2[row])[0]

    print prediction2

将输出:

    [-0.01 -0.   -0.06  0.97]
    [ 0.  0.  1.  1.]

请注意,第一个预测非常好,而第二个完全错误,我看不出这个类有什么问题:

    import math
    import random
    import itertools
    import numpy as np

    random.seed(0)

    def rand(a, b):
        return (b-a)*random.random() + a

    def sigmoid(x):
        return math.tanh(x)

    def dsigmoid(y):
        return 1.0 - y**2

    class NN:
        def __init__(self, ni, nh, no):
            # number of input, hidden, and output nodes
            self.ni = ni + 1 # +1 for bias node
            self.nh = nh + 1
            self.no = no

            # activations for nodes
            self.ai = [1.0]*self.ni
            self.ah = [1.0]*self.nh
            self.ao = [1.0]*self.no

            # create weights (rows=number of features, columns=number of processing nodes)
            self.wi = np.zeros((self.ni, self.nh))
            self.wo = np.zeros((self.nh, self.no))
            # set them to random vaules
            for i in range(self.ni):
                for j in range(self.nh):
                    self.wi[i][j] = rand(-5, 5)
            for j in range(self.nh):
                for k in range(self.no):
                    self.wo[j][k] = rand(-5, 5)

            # last change in weights for momentum   
            self.ci = np.zeros((self.ni, self.nh))
            self.co = np.zeros((self.nh, self.no))


        def runNetwork(self, inputs):
            if len(inputs) != self.ni-1:
                raise ValueError('wrong number of inputs')

            # input activations
            for i in range(self.ni-1):
                #self.ai[i] = sigmoid(inputs[i])
                self.ai[i] = inputs[i]

            # hidden activations   
            for j in range(self.nh-1):
                sum = 0.0
                for i in range(self.ni):
                    sum = sum + self.ai[i] * self.wi[i][j]
                self.ah[j] = sigmoid(sum)

            # output activations
            for k in range(self.no):
                sum = 0.0
                for j in range(self.nh):
                    sum = sum + self.ah[j] * self.wo[j][k]
                self.ao[k] = sigmoid(sum)

            ao_simplified = [round(a,2) for a in self.ao[:]]
            return ao_simplified  


        def backPropagate(self, targets, N, M):
            if len(targets) != self.no:
                raise ValueError('wrong number of target values')

            # calculate error terms for output
            output_deltas = [0.0] * self.no
            for k in range(self.no):
                error = targets[k]-self.ao[k]
                output_deltas[k] = dsigmoid(self.ao[k]) * error

            # calculate error terms for hidden
            hidden_deltas = [0.0] * self.nh
            for j in range(self.nh):
                error = 0.0
                for k in range(self.no):
                    error = error + output_deltas[k]*self.wo[j][k]
                hidden_deltas[j] = dsigmoid(self.ah[j]) * error

            # update output weights
            for j in range(self.nh):
                for k in range(self.no):
                    change = output_deltas[k]*self.ah[j]
                    self.wo[j][k] = self.wo[j][k] + N*change + M*self.co[j][k]
                    self.co[j][k] = change
                    #print N*change, M*self.co[j][k]

            # update input weights
            for i in range(self.ni):
                for j in range(self.nh):
                    change = hidden_deltas[j]*self.ai[i]
                    self.wi[i][j] = self.wi[i][j] + N*change + M*self.ci[i][j]
                    self.ci[i][j] = change

            # calculate error
            error = 0.0
            for k in range(len(targets)):
                error = error + 0.5*(targets[k]-self.ao[k])**2
            return error

        def train(self, patterns, iterations=1000, N=0.5, M=0.1):
            # N: learning rate
            # M: momentum factor
            for i in range(iterations):
                error = 0.0
                for p in patterns:
                    inputs = p[0]
                    targets = p[1]
                    self.runNetwork(inputs)
                    error = error + self.backPropagate(targets, N, M)
                if i % 100 == 0: # Prints error every 100 iterations
                    print('error %-.5f' % error)

任何帮助将不胜感激!

4

1 回答 1

1

有一件清楚可见的事情是你正在随机播种 0 - 我不知道你的问题域知道这是否是你的意图 - 但这样做总是会产生相同的数字系列,一个接一个. 这些数字是伪随机的。

当您使用同一类的第二个实例时,由于随机播种位于模块代码中,因此该系列不会重置 - 您将继续使用该系列的伪随机数,而不是相同的数字。如果我们的算法实际上不适用于随机数,这可能会在第二次运行时导致不同的结果,但取决于提供的特定系列 b random.seed(0)

除此之外,您的代码似乎没有保留任何可能导致您描述的问题的实例对象的状态。

及时 - 如果你的东西真的应该使用随机数,我建议在模块级别放弃 random.seed 语句。

否则,如果算法是正确的并且依赖于 random.seed(0) 之后产生的序列,您只需在开始在网络的第二个实例中工作之前重新发出此语句

于 2012-09-04T17:56:02.813 回答