我在我的 PostGIS 数据库 (-4326) 中使用 lat/long SRID。我想以有效的方式找到离给定点最近的点。我试着做一个
ORDER BY ST_Distance(point, ST_GeomFromText(?,-4326))
这在较低的 48 个州给了我好的结果,但在阿拉斯加它给了我垃圾。有没有办法在 PostGIS 中进行实际距离计算,还是我必须提供一个合理大小的缓冲区,然后计算大圆距离,然后在代码中对结果进行排序?
您正在寻找 ST_distance_sphere(point,point) 或 st_distance_spheroid(point,point)。
看:
http://postgis.refractions.net/documentation/manual-1.3/ch06.html#distance_sphere http://postgis.refractions.net/documentation/manual-1.3/ch06.html#distance_spheroid
这通常被称为测地线或测地线距离......虽然这两个术语的含义略有不同,但它们往往可以互换使用。
或者,您可以投影数据并使用标准 st_distance 函数......这仅适用于短距离(使用 UTM 或状态平面)或所有距离都相对于一个或两个点(等距投影)。
PostGIS 1.5 使用经纬度和米来处理真实的地球距离。它知道纬度/经度本质上是有角度的,并且有 360 度线
这是来自 SQL Server,我使用 Haversine 的距离可能会受到阿拉斯加问题的影响(可能会偏离一英里):
ALTER function [dbo].[getCoordinateDistance]
(
@Latitude1 decimal(16,12),
@Longitude1 decimal(16,12),
@Latitude2 decimal(16,12),
@Longitude2 decimal(16,12)
)
returns decimal(16,12)
as
/*
fUNCTION: getCoordinateDistance
Computes the Great Circle distance in kilometers
between two points on the Earth using the
Haversine formula distance calculation.
Input Parameters:
@Longitude1 - Longitude in degrees of point 1
@Latitude1 - Latitude in degrees of point 1
@Longitude2 - Longitude in degrees of point 2
@Latitude2 - Latitude in degrees of point 2
*/
begin
declare @radius decimal(16,12)
declare @lon1 decimal(16,12)
declare @lon2 decimal(16,12)
declare @lat1 decimal(16,12)
declare @lat2 decimal(16,12)
declare @a decimal(16,12)
declare @distance decimal(16,12)
-- Sets average radius of Earth in Kilometers
set @radius = 6366.70701949371
-- Convert degrees to radians
set @lon1 = radians( @Longitude1 )
set @lon2 = radians( @Longitude2 )
set @lat1 = radians( @Latitude1 )
set @lat2 = radians( @Latitude2 )
set @a = sqrt(square(sin((@lat2-@lat1)/2.0E)) +
(cos(@lat1) * cos(@lat2) * square(sin((@lon2-@lon1)/2.0E))) )
set @distance =
@radius * ( 2.0E *asin(case when 1.0E < @a then 1.0E else @a end ) )
return @distance
end
Vicenty 很慢,但精确到 1 毫米以内(我只找到了它的 javascript imp):
/*
* Calculate geodesic distance (in m) between two points specified by latitude/longitude (in numeric degrees)
* using Vincenty inverse formula for ellipsoids
*/
function distVincenty(lat1, lon1, lat2, lon2) {
var a = 6378137, b = 6356752.3142, f = 1/298.257223563; // WGS-84 ellipsiod
var L = (lon2-lon1).toRad();
var U1 = Math.atan((1-f) * Math.tan(lat1.toRad()));
var U2 = Math.atan((1-f) * Math.tan(lat2.toRad()));
var sinU1 = Math.sin(U1), cosU1 = Math.cos(U1);
var sinU2 = Math.sin(U2), cosU2 = Math.cos(U2);
var lambda = L, lambdaP = 2*Math.PI;
var iterLimit = 20;
while (Math.abs(lambda-lambdaP) > 1e-12 && --iterLimit>0) {
var sinLambda = Math.sin(lambda), cosLambda = Math.cos(lambda);
var sinSigma = Math.sqrt((cosU2*sinLambda) * (cosU2*sinLambda) +
(cosU1*sinU2-sinU1*cosU2*cosLambda) * (cosU1*sinU2-sinU1*cosU2*cosLambda));
if (sinSigma==0) return 0; // co-incident points
var cosSigma = sinU1*sinU2 + cosU1*cosU2*cosLambda;
var sigma = Math.atan2(sinSigma, cosSigma);
var sinAlpha = cosU1 * cosU2 * sinLambda / sinSigma;
var cosSqAlpha = 1 - sinAlpha*sinAlpha;
var cos2SigmaM = cosSigma - 2*sinU1*sinU2/cosSqAlpha;
if (isNaN(cos2SigmaM)) cos2SigmaM = 0; // equatorial line: cosSqAlpha=0 (§6)
var C = f/16*cosSqAlpha*(4+f*(4-3*cosSqAlpha));
lambdaP = lambda;
lambda = L + (1-C) * f * sinAlpha *
(sigma + C*sinSigma*(cos2SigmaM+C*cosSigma*(-1+2*cos2SigmaM*cos2SigmaM)));
}
if (iterLimit==0) return NaN // formula failed to converge
var uSq = cosSqAlpha * (a*a - b*b) / (b*b);
var A = 1 + uSq/16384*(4096+uSq*(-768+uSq*(320-175*uSq)));
var B = uSq/1024 * (256+uSq*(-128+uSq*(74-47*uSq)));
var deltaSigma = B*sinSigma*(cos2SigmaM+B/4*(cosSigma*(-1+2*cos2SigmaM*cos2SigmaM)-
B/6*cos2SigmaM*(-3+4*sinSigma*sinSigma)*(-3+4*cos2SigmaM*cos2SigmaM)));
var s = b*A*(sigma-deltaSigma);
s = s.toFixed(3); // round to 1mm precision
return s;
}