3

我目前使用以下代码输入 csv 文件,根据一列绘制数据点并将 CpK 数存储到变量中。此代码用于计算整个数据集的 CpK,并且图表也适用。我现在正在寻找计算数据集中每个月的 CpK 数(不需要绘图)。我查看了 data.table 文档以及其他 R 文档,但我很难只选择每个月的数据。

当前代码:(我可以用一个公式计算 CpK,但我故意将其分解)

mydf <- read.csv('ID35.csv', header = TRUE, sep=",")
date <- strptime(mydf$DATETIME, "%Y/%m/%d %H:%M:%S")
plot(date,mydf$AVG,xlab='Date',ylab='AVG',main='Data')
abline(h=mydf$MIN,col=3,lty=1)
abline(h=mydf$MAX,col=3,lty=1)
grid(NULL,NULL,col="black")
legend("topright", legend = c(" ", " "), text.width = strwidth("1,000,000"), lty = 1:2, xjust = 1, yjust = 1, title = "Points")
myavg <-mean(mydf$AVG, na.rm=TRUE)
newds <- (mydf$AVG - myavg)^2
newsum <- sum(newds, na.rm=TRUE)
N <- length(mydf$AVG) - 1
newN <- 1/N
total <- newN*newsum
sigma <- total^(1/2)
USL <- mean(mydf$MAX, na.rm=TRUE)
LSL <- mean(mydf$MIN, na.rm=TRUE)
cpk <- min(((USL-myavg)/(3*sigma)),((myavg-LSL)/(3*sigma)))
cpk

这是数据集的样子(日期格式已经完成):

mydf(仅 24/1000 行):

Code           DATETIME AVG MIN TARG_AVG MAX
N9 2012/04/10 14:03:37   0.2647     0.22     0.25     0.27
NA 2012/03/30 07:48:17   0.2589     0.22     0.25     0.27
NB 2012/03/24 19:23:08   0.2912     0.22     0.25     0.27
NB 2012/03/25 16:10:17   0.2659     0.22     0.25     0.27
NC 2012/04/10 00:58:29   0.2622     0.22     0.25     0.27
ND 2012/04/14 18:32:52   0.2600     0.22     0.25     0.27
NG 2012/04/21 14:47:47   0.2671     0.22     0.25     0.27
NH 2012/04/09 20:31:17   0.2648     0.22     0.25     0.27
NL 2012/04/24 07:28:17   0.2527     0.22     0.25     0.27
NP 2012/04/23 13:26:50   0.2640     0.22     0.25     0.27
NQ 2012/04/14 20:30:42   0.2590     0.22     0.25     0.27
NS 2012/05/02 09:09:52   0.2651     0.22     0.25     0.27
NU 2012/05/04 13:07:49   0.2688     0.22     0.25     0.27
NV 2012/05/19 23:07:08   0.2716     0.22     0.25     0.27
NX 2012/05/03 02:00:13   0.2670     0.22     0.25     0.27
NY 2012/05/04 12:56:52   0.2680     0.22     0.25     0.27
NZ 2012/05/06 10:05:38   0.2697     0.22     0.25     0.27
O0 2012/05/07 22:01:11   0.2675     0.22     0.25     0.27
O3 2012/06/21 18:09:47   0.2606     0.22     0.25     0.27
04 2012/06/21 18:47:36   0.2545     0.22     0.25     0.27
51 2012/07/24 21:13:08   0.2541     0.22     0.25     0.27
O5 2012/07/26 16:54:09   0.2575     0.22     0.25     0.27
O6 2012/07/20 02:42:29   0.2603     0.22     0.25     0.27
OD 2012/08/25 20:56:55   0.2559     0.22     0.25     0.27
OH 2012/08/28 10:30:11   0.2372     0.22     0.25     0.27

从上面的表格中,我只关心两列是 DATETIME 和 AVG。一旦我有了每个月的新“myavg”变量,我就可以使用相同的公式来计算 CpK 数。我认为变量名称可能类似于“2012/08”我认为代码应该类似于:

for(each month mydf$DATETIME) (date like 2012/04*,2012/05*)
monthavg <-(mydf$AVG, na.rm=TRUE)

有没有办法将每个月的 CpK 数字存储在我可以访问的变量中?

4

1 回答 1

1
aggregate(mydf$AVG, list(month=months(as.Date(mydf$DATETIME))), mean)

#    month         x
# 1  April 0.2618125
# 2 August 0.2465500
# 3   July 0.2573000
# 4   June 0.2575500
# 5  March 0.2720000
# 6    May 0.2682429
于 2012-08-31T16:15:35.433 回答