23

我正在尝试使用 boost::asio 创建一个有限的线程池类。但是我被困在某一点上可以有人帮助我。

唯一的问题是我应该减少计数器的地方?

代码没有按预期工作。

问题是我不知道我的线程何时完成执行以及如何知道它已返回池

#include <boost/asio.hpp>
#include <iostream>
#include <boost/thread/thread.hpp>
#include <boost/bind.hpp>
#include <boost/thread/mutex.hpp>
#include <stack>

using namespace std;
using namespace boost;

class ThreadPool
{
    static int count;
    int NoOfThread;
    thread_group grp;
    mutex mutex_;
    asio::io_service io_service;
    int counter;
    stack<thread*> thStk ;

public:
    ThreadPool(int num)
    {   
        NoOfThread = num;
        counter = 0;
        mutex::scoped_lock lock(mutex_);

        if(count == 0)
            count++;
        else
            return;

        for(int i=0 ; i<num ; ++i)
        {
            thStk.push(grp.create_thread(boost::bind(&asio::io_service::run, &io_service)));
        }
    }
    ~ThreadPool()
    {
        io_service.stop();
        grp.join_all();
    }

    thread* getThread()
    {
        if(counter > NoOfThread)
        {
            cout<<"run out of threads \n";
            return NULL;
        }

        counter++;
        thread* ptr = thStk.top();
        thStk.pop();
        return ptr;
    }
};
int ThreadPool::count = 0;


struct callable
{
    void operator()()
    {
        cout<<"some task for thread \n";
    }
};

int main( int argc, char * argv[] )
{

    callable x;
    ThreadPool pool(10);
    thread* p = pool.getThread();
    cout<<p->get_id();

    //how i can assign some function to thread pointer ?
    //how i can return thread pointer after work done so i can add 
//it back to stack?


    return 0;
}
4

1 回答 1

40

简而言之,您需要用另一个函数包装用户提供的任务,该函数将:

  • 调用用户函数或可调用对象。
  • 锁定互斥锁并递减计数器。

我可能不了解此线程池的所有要求。因此,为了清楚起见,这里有一个关于我认为是要求的明确列表:

  • 池管理线程的生命周期。用户不应该能够删除驻留在池中的线​​程。
  • 用户可以以非侵入方式将任务分配给池。
  • 分配任务时,如果池中的所有线程当前都在运行其他任务,则丢弃该任务。

在提供实现之前,我想强调几个关键点:

  • 一旦一个线程被启动,它将一直运行直到完成、取消或终止。线程正在执行的函数不能被重新分配。为了允许单个线程在其生命周期中执行多个函数,线程将希望使用将从队列中读取的函数启动,例如io_service::run(),并将可调用类型发布到事件队列中,例如 from io_service::post()
  • io_service::run()如果 中没有待处理的工作,则返回io_serviceio_service停止,或者线程正在运行的处理程序抛出异常。为了防止io_serivce::run()在没有未完成的工作时返回,io_service::work可以使用该类。
  • 定义任务的类型要求(即任务的类型必须可通过object()语法调用)而不是要求类型(即任务必须继承自process),为用户提供了更大的灵活性。它允许用户提供任务作为函数指针或提供 nullary 的类型operator()

使用实现boost::asio

#include <boost/asio.hpp>
#include <boost/thread.hpp>

class thread_pool
{
private:
  boost::asio::io_service io_service_;
  boost::asio::io_service::work work_;
  boost::thread_group threads_;
  std::size_t available_;
  boost::mutex mutex_;
public:

  /// @brief Constructor.
  thread_pool( std::size_t pool_size )
    : work_( io_service_ ),
      available_( pool_size )
  {
    for ( std::size_t i = 0; i < pool_size; ++i )
    {
      threads_.create_thread( boost::bind( &boost::asio::io_service::run,
                                           &io_service_ ) );
    }
  }

  /// @brief Destructor.
  ~thread_pool()
  {
    // Force all threads to return from io_service::run().
    io_service_.stop();

    // Suppress all exceptions.
    try
    {
      threads_.join_all();
    }
    catch ( const std::exception& ) {}
  }

  /// @brief Adds a task to the thread pool if a thread is currently available.
  template < typename Task >
  void run_task( Task task )
  {
    boost::unique_lock< boost::mutex > lock( mutex_ );

    // If no threads are available, then return.
    if ( 0 == available_ ) return;

    // Decrement count, indicating thread is no longer available.
    --available_;

    // Post a wrapped task into the queue.
    io_service_.post( boost::bind( &thread_pool::wrap_task, this,
                                   boost::function< void() >( task ) ) );
  }

private:
  /// @brief Wrap a task so that the available count can be increased once
  ///        the user provided task has completed.
  void wrap_task( boost::function< void() > task )
  {
    // Run the user supplied task.
    try
    {
      task();
    }
    // Suppress all exceptions.
    catch ( const std::exception& ) {}

    // Task has finished, so increment count of available threads.
    boost::unique_lock< boost::mutex > lock( mutex_ );
    ++available_;
  }
};

关于实现的几点评论:

  • 异常处理需要围绕用户的任务进行。如果用户的函数或可调用对象抛出非 type 的异常,boost::thread_interruptedstd::terminate()调用。这是 Boost.Thread在线程函数行为中出现异常的结果。Boost.Asio从 handlers 抛出异常的效果也值得一读。
  • 如果用户提供taskvia boost::bind,则嵌套boost::bind将无法编译。需要以下选项之一:
    • 不支持taskboost::bind.
    • 元编程根据用户的类型是否可以使用结果来执行编译时分支,因为boost::bind只有在某些函数对象上才能正确运行。boost::protectboost::protect
    • task使用另一种类型间接传递对象。我选择以boost::function丢失确切类型为代价来提高可读性。 boost::tuple,虽然可读性稍差,但也可用于保留确切的类型,如 Boost.Asio 的序列化示例所示。

应用程序代码现在可以thread_pool非侵入性地使用该类型:

void work() {};

struct worker
{
  void operator()() {};
};

void more_work( int ) {};

int main()
{ 
  thread_pool pool( 2 );
  pool.run_task( work );                        // Function pointer.
  pool.run_task( worker() );                    // Callable object.
  pool.run_task( boost::bind( more_work, 5 ) ); // Callable object.
}

可以在没有 Boost.Asio的thread_pool情况下创建,并且对维护者来说可能稍微容易一些,因为他们不再需要了解Boost.Asio行为,例如何时io_service::run()返回以及io_service::work对象是什么:

#include <queue>
#include <boost/bind.hpp>
#include <boost/thread.hpp>

class thread_pool
{
private:
  std::queue< boost::function< void() > > tasks_;
  boost::thread_group threads_;
  std::size_t available_;
  boost::mutex mutex_;
  boost::condition_variable condition_;
  bool running_;
public:

  /// @brief Constructor.
  thread_pool( std::size_t pool_size )
    : available_( pool_size ),
      running_( true )
  {
    for ( std::size_t i = 0; i < pool_size; ++i )
    {
      threads_.create_thread( boost::bind( &thread_pool::pool_main, this ) ) ;
    }
  }

  /// @brief Destructor.
  ~thread_pool()
  {
    // Set running flag to false then notify all threads.
    {
      boost::unique_lock< boost::mutex > lock( mutex_ );
      running_ = false;
      condition_.notify_all();
    }

    try
    {
      threads_.join_all();
    }
    // Suppress all exceptions.
    catch ( const std::exception& ) {}
  }

  /// @brief Add task to the thread pool if a thread is currently available.
  template < typename Task >
  void run_task( Task task )
  {
    boost::unique_lock< boost::mutex > lock( mutex_ );

    // If no threads are available, then return.
    if ( 0 == available_ ) return;

    // Decrement count, indicating thread is no longer available.
    --available_;

    // Set task and signal condition variable so that a worker thread will
    // wake up andl use the task.
    tasks_.push( boost::function< void() >( task ) );
    condition_.notify_one();
  }

private:
  /// @brief Entry point for pool threads.
  void pool_main()
  {
    while( running_ )
    {
      // Wait on condition variable while the task is empty and the pool is
      // still running.
      boost::unique_lock< boost::mutex > lock( mutex_ );
      while ( tasks_.empty() && running_ )
      {
        condition_.wait( lock );
      }
      // If pool is no longer running, break out.
      if ( !running_ ) break;

      // Copy task locally and remove from the queue.  This is done within
      // its own scope so that the task object is destructed immediately
      // after running the task.  This is useful in the event that the
      // function contains shared_ptr arguments bound via bind.
      {
        boost::function< void() > task = tasks_.front();
        tasks_.pop();

        lock.unlock();

        // Run the task.
        try
        {
          task();
        }
        // Suppress all exceptions.
        catch ( const std::exception& ) {}
      }

      // Task has finished, so increment count of available threads.
      lock.lock();
      ++available_;
    } // while running_
  }
};
于 2012-09-04T15:52:26.617 回答