这是一个较晚的答案,用于从未回答的列表中删除此问题。
您已经认识到计算有多少粒子落入某个单元格相当于构建直方图。直方图的构建是一个经过充分研究的问题。Shane Cook 的书(CUDA Programming)包含关于这个主题的很好的讨论。此外,CUDA 样本包含直方图示例。此外,CUDA Thrust 的直方图构造也是可能的。最后,CUDA 编程博客包含更多见解。
下面我提供了一个代码来比较 5 种不同版本的直方图计算:
- 中央处理器;
- 带有原子的 GPU(基本上是您的方法);
- GPU 与共享内存中的原子以及部分直方图的最终总和(基本上是 Paul R 提出的方法);
- GPU 通过使用 CUDA 推力。
如果您在 Kepler K20c 上运行 10MB 数据的典型案例的代码,您会得到以下时序:
- 中央处理器 =
83ms
;
- 带有原子的 GPU =
15.8ms
;
- GPU 与共享内存中的原子 =
17.7ms
;
- CUDA 推力的 GPU =
40ms
.
如您所见,令人惊讶的是,您的“蛮力”解决方案是最快的。这是有道理的,因为对于最新的架构(您的帖子日期为 2012 年 8 月,当时 Kepler 尚未发布,至少在欧洲),原子操作非常快。
这是代码:
#include <thrust/device_vector.h>
#include <thrust/sort.h>
#include <thrust/generate.h>
#include <thrust/adjacent_difference.h>
#include <thrust/binary_search.h>
#define SIZE (100*1024*1024) // 100 MB
/**********************************************/
/* FUNCTION TO GENERATE RANDOM UNSIGNED CHARS */
/**********************************************/
unsigned char* big_random_block(int size) {
unsigned char *data = (unsigned char*)malloc(size);
for (int i=0; i<size; i++)
data[i] = rand();
return data;
}
/***************************************/
/* GPU HISTOGRAM CALCULATION VERSION 1 */
/***************************************/
__global__ void histo_kernel1(unsigned char *buffer, long size, unsigned int *histo ) {
// --- The number of threads does not cover all the data size
int i = threadIdx.x + blockIdx.x * blockDim.x;
int stride = blockDim.x * gridDim.x;
while (i < size) {
atomicAdd(&histo[buffer[i]], 1);
i += stride;
}
}
/***************************************/
/* GPU HISTOGRAM CALCULATION VERSION 2 */
/***************************************/
__global__ void histo_kernel2(unsigned char *buffer, long size, unsigned int *histo ) {
// --- Allocating and initializing shared memory to store partial histograms
__shared__ unsigned int temp[256];
temp[threadIdx.x] = 0;
__syncthreads();
// --- The number of threads does not cover all the data size
int i = threadIdx.x + blockIdx.x * blockDim.x;
int offset = blockDim.x * gridDim.x;
while (i < size)
{
atomicAdd(&temp[buffer[i]], 1);
i += offset;
}
__syncthreads();
// --- Summing histograms
atomicAdd(&(histo[threadIdx.x]), temp[threadIdx.x]);
}
/********************/
/* CUDA ERROR CHECK */
/********************/
#define gpuErrchk(ans) { gpuAssert((ans), __FILE__, __LINE__); }
inline void gpuAssert(cudaError_t code, char *file, int line, bool abort=true)
{
if (code != cudaSuccess)
{
fprintf(stderr,"GPUassert: %s %s %d\n", cudaGetErrorString(code), file, line);
if (abort) exit(code);
}
}
/********/
/* MAIN */
/********/
void main(){
// --- Generating an array of SIZE unsigned chars
unsigned char *buffer = (unsigned char*)big_random_block(SIZE);
/********************/
/* CPU COMPUTATIONS */
/********************/
// --- Allocating host memory space and initializing the host-side histogram
unsigned int histo[256];
for (int i=0; i<256; i++) histo [i] = 0;
clock_t start_CPU, stop_CPU;
// --- Histogram calculation on the host
start_CPU = clock();
for (int i=0; i<SIZE; i++) histo [buffer[i]]++;
stop_CPU = clock();
float elapsedTime = (float)(stop_CPU - start_CPU) / (float)CLOCKS_PER_SEC * 1000.0f;
printf("Time to generate (CPU): %3.1f ms\n", elapsedTime);
// --- Indirect check of the result
long histoCount = 0;
for (int i=0; i<256; i++) { histoCount += histo[i]; }
printf("Histogram Sum: %ld\n", histoCount);
/********************/
/* GPU COMPUTATIONS */
/********************/
// --- Initializing the device-side data
unsigned char *dev_buffer;
gpuErrchk(cudaMalloc((void**)&dev_buffer,SIZE));
gpuErrchk(cudaMemcpy(dev_buffer, buffer, SIZE, cudaMemcpyHostToDevice));
// --- Allocating device memory space for the device-side histogram
unsigned int *dev_histo;
gpuErrchk(cudaMalloc((void**)&dev_histo,256*sizeof(long)));
// --- GPU timing
cudaEvent_t start, stop;
gpuErrchk(cudaEventCreate(&start));
gpuErrchk(cudaEventCreate(&stop));
// --- ATOMICS
// --- Histogram calculation on the device - 2x the number of multiprocessors gives best timing
gpuErrchk(cudaEventRecord(start,0));
gpuErrchk(cudaMemset(dev_histo,0,256*sizeof(int)));
cudaDeviceProp prop;
gpuErrchk(cudaGetDeviceProperties(&prop,0));
int blocks = prop.multiProcessorCount;
histo_kernel1<<<blocks*2,256>>>(dev_buffer, SIZE, dev_histo);
gpuErrchk(cudaMemcpy(histo,dev_histo,256*sizeof(int),cudaMemcpyDeviceToHost));
gpuErrchk(cudaEventRecord(stop,0));
gpuErrchk(cudaEventSynchronize(stop));
gpuErrchk(cudaEventElapsedTime(&elapsedTime,start,stop));
printf("Time to generate (GPU): %3.1f ms\n", elapsedTime);
histoCount = 0;
for (int i=0; i<256; i++) {
histoCount += histo[i];
}
printf( "Histogram Sum: %ld\n", histoCount );
// --- Check the correctness of the results via the host
for (int i=0; i<SIZE; i++) histo[buffer[i]]--;
for (int i=0; i<256; i++) {
if (histo[i] != 0) printf( "Failure at %d! Off by %d\n", i, histo[i] );
}
// --- ATOMICS IN SHARED MEMORY
// --- Histogram calculation on the device - 2x the number of multiprocessors gives best timing
gpuErrchk(cudaEventRecord(start,0));
gpuErrchk(cudaMemset(dev_histo,0,256*sizeof(int)));
gpuErrchk(cudaGetDeviceProperties(&prop,0));
blocks = prop.multiProcessorCount;
histo_kernel2<<<blocks*2,256>>>(dev_buffer, SIZE, dev_histo);
gpuErrchk(cudaMemcpy(histo,dev_histo,256*sizeof(int),cudaMemcpyDeviceToHost));
gpuErrchk(cudaEventRecord(stop,0));
gpuErrchk(cudaEventSynchronize(stop));
gpuErrchk(cudaEventElapsedTime(&elapsedTime,start,stop));
printf("Time to generate (GPU): %3.1f ms\n", elapsedTime);
histoCount = 0;
for (int i=0; i<256; i++) {
histoCount += histo[i];
}
printf( "Histogram Sum: %ld\n", histoCount );
// --- Check the correctness of the results via the host
for (int i=0; i<SIZE; i++) histo[buffer[i]]--;
for (int i=0; i<256; i++) {
if (histo[i] != 0) printf( "Failure at %d! Off by %d\n", i, histo[i] );
}
// --- CUDA THRUST
gpuErrchk(cudaEventRecord(start,0));
// --- Wrapping dev_buffer raw pointer with a device_ptr and initializing a device_vector with it
thrust::device_ptr<unsigned char> dev_ptr(dev_buffer);
thrust::device_vector<unsigned char> dev_buffer_thrust(dev_ptr, dev_ptr + SIZE);
// --- Sorting data to bring equal elements together
thrust::sort(dev_buffer_thrust.begin(), dev_buffer_thrust.end());
// - The number of histogram bins is equal to the maximum value plus one
int num_bins = dev_buffer_thrust.back() + 1;
// --- Resize histogram storage
thrust::device_vector<int> d_histogram;
d_histogram.resize(num_bins);
// --- Find the end of each bin of values
thrust::counting_iterator<int> search_begin(0);
thrust::upper_bound(dev_buffer_thrust.begin(), dev_buffer_thrust.end(),
search_begin, search_begin + num_bins,
d_histogram.begin());
// --- Compute the histogram by taking differences of the cumulative histogram
thrust::adjacent_difference(d_histogram.begin(), d_histogram.end(),
d_histogram.begin());
thrust::host_vector<int> h_histogram(d_histogram);
gpuErrchk(cudaEventRecord(stop,0));
gpuErrchk(cudaEventSynchronize(stop));
gpuErrchk(cudaEventElapsedTime(&elapsedTime,start,stop));
printf("Time to generate (GPU): %3.1f ms\n", elapsedTime);
histoCount = 0;
for (int i=0; i<256; i++) {
histoCount += h_histogram[i];
}
printf( "Histogram Sum: %ld\n", histoCount );
// --- Check the correctness of the results via the host
for (int i=0; i<SIZE; i++) h_histogram[buffer[i]]--;
for (int i=0; i<256; i++) {
if (h_histogram[i] != 0) printf( "Failure at %d! Off by %d\n", i, h_histogram[i] );
}
gpuErrchk(cudaEventDestroy(start));
gpuErrchk(cudaEventDestroy(stop));
gpuErrchk(cudaFree(dev_histo));
gpuErrchk(cudaFree(dev_buffer));
free(buffer);
getchar();
}