0

我是 R 新手,当我要使用 glm() 估计逻辑模型时,它不会预测响应,而是在调用预测函数时给出一个不实际的输出,比如我的预测函数中的每个输入的 1。

Code:

    ex2data1R <- read.csv("/media/ex2data1R.txt")
    x <-ex2data1R$x
    y <-ex2data1R$y
    z <-ex2data1R$z

    logisticmodel <- glm(z~x+y,family=binomial(link = "logit"),data=ex2data1R)
    newdata = data.frame(x=c(10),y=(10))
    predict(logisticmodel, newdata, type="response") 

Output:
> predict(logisticmodel, newdata, type="response") 
           1 
1.181875e-11 

Data(ex2data1R.txt) :
"x","y","z"
34.62365962451697,78.0246928153624,0
30.28671076822607,43.89499752400101,0
35.84740876993872,72.90219802708364,0
60.18259938620976,86.30855209546826,1
79.0327360507101,75.3443764369103,1
45.08327747668339,56.3163717815305,0
61.10666453684766,96.51142588489624,1
75.02474556738889,46.55401354116538,1
76.09878670226257,87.42056971926803,1
84.43281996120035,43.53339331072109,1
95.86155507093572,38.22527805795094,0
75.01365838958247,30.60326323428011,0
82.30705337399482,76.48196330235604,1
69.36458875970939,97.71869196188608,1
39.53833914367223,76.03681085115882,0
53.9710521485623,89.20735013750205,1
69.07014406283025,52.74046973016765,1
67.94685547711617,46.67857410673128,0
70.66150955499435,92.92713789364831,1
76.97878372747498,47.57596364975532,1
67.37202754570876,42.83843832029179,0
89.67677575072079,65.79936592745237,1
50.534788289883,48.85581152764205,0
34.21206097786789,44.20952859866288,0
77.9240914545704,68.9723599933059,1
62.27101367004632,69.95445795447587,1
80.1901807509566,44.82162893218353,1
93.114388797442,38.80067033713209,0
61.83020602312595,50.25610789244621,0
38.78580379679423,64.99568095539578,0
61.379289447425,72.80788731317097,1
85.40451939411645,57.05198397627122,1
52.10797973193984,63.12762376881715,0
52.04540476831827,69.43286012045222,1
40.23689373545111,71.16774802184875,0
54.63510555424817,52.21388588061123,0
33.91550010906887,98.86943574220611,0
64.17698887494485,80.90806058670817,1
74.78925295941542,41.57341522824434,0
34.1836400264419,75.2377203360134,0
83.90239366249155,56.30804621605327,1
51.54772026906181,46.85629026349976,0
94.44336776917852,65.56892160559052,1
82.36875375713919,40.61825515970618,0
51.04775177128865,45.82270145776001,0
62.22267576120188,52.06099194836679,0
77.19303492601364,70.45820000180959,1
97.77159928000232,86.7278223300282,1
62.07306379667647,96.76882412413983,1
91.56497449807442,88.69629254546599,1
79.94481794066932,74.16311935043758,1
99.2725269292572,60.99903099844988,1
90.54671411399852,43.39060180650027,1
34.52451385320009,60.39634245837173,0
50.2864961189907,49.80453881323059,0
49.58667721632031,59.80895099453265,0
97.64563396007767,68.86157272420604,1
32.57720016809309,95.59854761387875,0
74.24869136721598,69.82457122657193,1
71.79646205863379,78.45356224515052,1
75.3956114656803,85.75993667331619,1
35.28611281526193,47.02051394723416,0
56.25381749711624,39.26147251058019,0
30.05882244669796,49.59297386723685,0
44.66826172480893,66.45008614558913,0
66.56089447242954,41.09209807936973,0
40.45755098375164,97.53518548909936,1
49.07256321908844,51.88321182073966,0
80.27957401466998,92.11606081344084,1
66.74671856944039,60.99139402740988,1
32.72283304060323,43.30717306430063,0
64.0393204150601,78.03168802018232,1
72.34649422579923,96.22759296761404,1
60.45788573918959,73.09499809758037,1
58.84095621726802,75.85844831279042,1
99.82785779692128,72.36925193383885,1
47.26426910848174,88.47586499559782,1
50.45815980285988,75.80985952982456,1
60.45555629271532,42.50840943572217,0
82.22666157785568,42.71987853716458,0
88.9138964166533,69.80378889835472,1
94.83450672430196,45.69430680250754,1
67.31925746917527,66.58935317747915,1
57.23870631569862,59.51428198012956,1
80.36675600171273,90.96014789746954,1
68.46852178591112,85.59430710452014,1
42.0754545384731,78.84478600148043,0
75.47770200533905,90.42453899753964,1
78.63542434898018,96.64742716885644,1
52.34800398794107,60.76950525602592,0
94.09433112516793,77.15910509073893,1
90.44855097096364,87.50879176484702,1
55.48216114069585,35.57070347228866,0
74.49269241843041,84.84513684930135,1
89.84580670720979,45.35828361091658,1
83.48916274498238,48.38028579728175,1
42.2617008099817,87.10385094025457,1
99.31500880510394,68.77540947206617,1
55.34001756003703,64.9319380069486,1
74.77589300092767,89.52981289513276,1

让我知道我做错了什么?

4

3 回答 3

7

我没有看到任何问题。以下是 x,y = 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100 的预测值:

newdata = data.frame(x=seq(30, 100, 5) ,y=seq(30, 100, 5))
predict(logisticmodel, newdata, type="response")
1            2            3            4            5            6 
2.423648e-06 1.861140e-05 1.429031e-04 1.096336e-03 8.357794e-03 6.078786e-02 
           7            8            9           10           11           12 
3.320041e-01 7.923883e-01 9.670066e-01 9.955766e-01 9.994218e-01 9.999247e-01 
          13           14           15 
9.999902e-01 9.999987e-01 9.999998e-01

您预测 x=10, y=10 远远超出您的 x, y 值 (30 - 100) 的范围,但预测为零,符合这些结果。当 x 和 y 较低 (30 - 55) 时,z 的预测为零。当 x 和 y 很高(75 - 100)时,预测值为 1(或接近 1)。如果将结果四舍五入到几位小数,可能会更容易解释结果:

round(predict(logisticmodel, newdata, type="response") , 5)
      1       2       3       4       5       6       7       8       9      10 
0.00000 0.00002 0.00014 0.00110 0.00836 0.06079 0.33200 0.79239 0.96701 0.99558 
     11      12      13      14      15 
0.99942 0.99992 0.99999 1.00000 1.00000

这是预测类别并将结果与​​数据进行比较的简单方法:

predict <- ifelse(predict(logisticmodel, type="response")>.5, 1, 0)
xtabs(~predict+ex2data1R$z)

ex2data1R$z
predict  0  1
      0 34  5
      1  6 55

我们在您的原始数据上使用了 predict(),然后创建了一个规则,如果概率大于 .5,则选择 1,否则选择 0。然后我们使用 xtabs() 将预测与数据进行比较。当 z 为 0 时,我们正确预测 0 34 次,错误预测 1 6 次。当 z 为 1 时,我们正确预测 1 55 次,错误预测 0 5 次。我们 89% 的时间是正确的 (34+55)/100*100。如果您使用 0.45 或 0.55 而不是 0.5 作为截止值,您可以探索预测的准确性。

于 2012-08-29T19:13:05.303 回答
2

我认为一切都是正确的,您可以从 R 手册中阅读:

newdata - 可选的,一个数据框,用于查找要预测的变量。如果省略,则使用拟合的线性预测变量。

如果您有包含 1 条记录的数据框,它将仅针对该记录生成预测。

有关更多详细信息,请参阅R 手册/glm/predict

或者只是在 R 控制台中,加载库 glm 后:

?glm
于 2012-08-29T19:07:25.763 回答
0

您还可以使用以下命令来制作混淆矩阵:

predict <- ifelse(predict(logisticmodel, type="response")>.5, 1, 0)
table(predict,ex2data1R$z)
于 2015-04-13T08:44:32.907 回答