我正在尝试在 cuda 中实现 Sauvola Binarization。为此,我已经读取了主机中二维数组中的图像并使用间距为设备中的二维数组分配内存。分配内存后,我试图将主机二维数组复制到设备 2d使用 cudaMemcpy2D 的数组,它编译得很好,但它在运行时崩溃了。我无法理解我错过了什么,请提出一些建议。我编写的代码如下:
#include "BinMain.h"
#include "Binarization.h"
#include <stdlib.h>
#include <stdio.h>
#include <conio.h>
#include <cuda.h>
#include <cuda_runtime.h>
void printDevProp(cudaDeviceProp);
void CUDA_SAFE_CALL( cudaError_t);
int main()
{
//Read an IplImage in imgOriginal as grayscale
IplImage * imgOriginal = cvLoadImage("E:\\1.tiff",CV_LOAD_IMAGE_GRAYSCALE);
//Create a size variable of type CvSize for cvCreateImage Parameter
CvSize size = cvSize(imgOriginal->width,imgOriginal->height);
//create an image for storing the result image with same height and width as imgOriginal
IplImage * imgResult = cvCreateImage(size,imgOriginal->depth,imgOriginal- >nChannels);
//Create a 2D array for storing the pixels value of each of the pixel of imgOriginal grayscale image
int ** arrOriginal = (int **)malloc(imgOriginal->height * sizeof(int *));
for (int i = 0; i < imgOriginal->height; i++)
{
arrOriginal[i] = (int*)malloc(imgOriginal->width * sizeof(int));
}
//Create a 2D array for storing the returned device array
int ** arrReturn = (int **)malloc(imgOriginal->height * sizeof(int *));
for (int i = 0; i < imgOriginal->height; i++)
{
arrReturn[i] = (int*)malloc(imgOriginal->width * sizeof(int));
}
//Create a CvScalar variable to copy pixel values in 2D array (arrOriginal)
CvScalar s;
//Copying the pixl values
for(int j = 0;j<imgOriginal->height;j++)
{
for(int k =0;k<imgOriginal->width;k++)
{
s = cvGet2D(imgOriginal,j,k);
arrOriginal[j][k] = s.val[0];
}
}
//Cuda Device Property
int devCount;
cudaGetDeviceCount(&devCount);
printf("CUDA Device Query...\n");
printf("There are %d CUDA devices.\n", devCount);
// Iterate through devices
for (int i = 0; i < devCount; ++i)
{
// Get device properties
printf("\nCUDA Device #%d\n", i);
cudaDeviceProp devProp;
cudaGetDeviceProperties(&devProp, i);
printDevProp(devProp);
}
//Start the clock
clock_t start = clock();
//Allocating Device memory for 2D array using pitch
size_t host_orig_pitch = imgOriginal->width * sizeof(int)* imgOriginal->height; //host original array pitch in bytes
size_t dev_pitch; //device array pitch in bytes which will be used in cudaMallocPitch
size_t dev_pitchReturn; //device return array pitch in bytes
size_t host_ret_pitch = imgOriginal->width * sizeof(int)* imgOriginal->height; //host return array pitch in bytes
int * devArrOriginal; //device 2d array of original image
int * result; //device 2d array for returned array
int dynmicRange = 128; //Dynamic Range for calculating the threshold from sauvola's formula
//Allocating memory by using cudaMallocPitch
CUDA_SAFE_CALL(cudaMallocPitch((void**)&devArrOriginal,&dev_pitch,imgOriginal->width * sizeof(int),imgOriginal->height * sizeof(int)));
//Allocating memory for returned array
CUDA_SAFE_CALL(cudaMallocPitch((void**)&result,&dev_pitchReturn,imgOriginal->width * sizeof(int),imgOriginal->height * sizeof(int)));
//Copying 2D array from host memory to device mempry by using cudaMemCpy2D
CUDA_SAFE_CALL(cudaMemcpy2D((void*)devArrOriginal,dev_pitch,(void*)arrOriginal,host_orig_pitch,imgOriginal->width * sizeof(float),imgOriginal->height,cudaMemcpyHostToDevice));
int windowSize = 19; //Size of the window for calculating mean and variance
//Launching the kernel by calling myKernelLauncher function.
myKernelLauncher(devArrOriginal,result,windowSize,imgOriginal->width,imgOriginal- >height,dev_pitch,dynmicRange);
//Calling the sauvola binarization function by passing the parameters as
//1.arrOriginal 2D array 2.Original image height 3.Original image width
//int ** result = AdaptiveBinarization(arrOriginal,imgOriginal->height,imgOriginal- >width);//binarization(arrOriginal,imgOriginal->width,imgOriginal->height);
//
CUDA_SAFE_CALL(cudaMemcpy2D(arrReturn,host_ret_pitch,result,dev_pitchReturn,imgOriginal->width * sizeof(int),imgOriginal->height * sizeof(int),cudaMemcpyDeviceToHost));
//create a CvScalar variable to set the data in imgResult
CvScalar ss;
//Copy the pixel values from returned array to imgResult
for(int i=0;i<imgOriginal->height;i++)
{
for(int j=0;j<imgOriginal->width;j++)
{
ss = cvScalar(arrReturn[i][j]*255);
cvSet2D(imgResult,i,j,ss);
//k++; //No need for k if returned array is 2D
}
}
printf("Done \n");
//calculate and print the time elapsed
printf("Time elapsed: %f\n", ((double)clock() - start) / CLOCKS_PER_SEC);
//Create a windoe and show the resule image
cvNamedWindow("Result",CV_WINDOW_AUTOSIZE);
cvShowImage("Result",imgResult);
cvWaitKey(0);
getch();
//Release the various resources
cvReleaseImage(&imgResult);
cvReleaseImage(&imgOriginal);
cvDestroyWindow("Result");
for(int i = 0; i < imgOriginal->height; i++)
free(arrOriginal[i]);
free(arrOriginal);
free(result);
cudaFree(&devArrOriginal);
cudaFree(&result);
}
// Print device properties
void printDevProp(cudaDeviceProp devProp)
{
printf("Major revision number: %d\n", devProp.major);
printf("Minor revision number: %d\n", devProp.minor);
printf("Name: %s\n", devProp.name);
printf("Total global memory: %u\n", devProp.totalGlobalMem);
printf("Total shared memory per block: %u\n", devProp.sharedMemPerBlock);
printf("Total registers per block: %d\n", devProp.regsPerBlock);
printf("Warp size: %d\n", devProp.warpSize);
printf("Maximum memory pitch: %u\n", devProp.memPitch);
printf("Maximum threads per block: %d\n", devProp.maxThreadsPerBlock);
for (int i = 0; i < 3; ++i)
printf("Maximum dimension %d of block: %d\n", i, devProp.maxThreadsDim[i]);
for (int i = 0; i < 3; ++i)
printf("Maximum dimension %d of grid: %d\n", i, devProp.maxGridSize[i]);
printf("Clock rate: %d\n", devProp.clockRate);
printf("Total constant memory: %u\n", devProp.totalConstMem);
printf("Texture alignment: %u\n", devProp.textureAlignment);
printf("Concurrent copy and execution: %s\n", (devProp.deviceOverlap ? "Yes" : "No"));
printf("Number of multiprocessors: %d\n", devProp.multiProcessorCount);
printf("Kernel execution timeout: %s\n", (devProp.kernelExecTimeoutEnabled ? "Yes" : "No"));
return;
}
/* Utility Macro : CUDA SAFE CALL */
void CUDA_SAFE_CALL( cudaError_t call)
{
cudaError_t ret = call;
switch(ret)
{
case cudaSuccess:
break;
default :
{
printf(" ERROR at line :%i.%d' ' %s\n",
__LINE__,ret,cudaGetErrorString(ret));
exit(-1);
break;
}
}
}
代码流程如下: 1. 在主机中从图像创建一个二维数组,并为内核返回的数组创建另一个数组。2. 使用 CudaMallocPitch 为设备中的二维数组分配内存 3. 为将由内核返回的二维数组分配内存。4. 使用 cudaMemcpy2d 将原始二维数组从主机复制到设备数组。5. 启动内核。6. 使用 cudaMemcpy2D 将返回的设备数组复制到主机数组。
程序在到达第 4 点时崩溃。这是一个未处理的异常,说明“SauvolaBinarization_CUDA_OpenCV.exe 中 0x773415de 处的未处理异常:0xC0000005:访问冲突读取位置 0x01611778。”
我认为问题一定是在分配内存时,但我是第一次使用该功能并且不知道它是如何工作的,请建议。