54

我经常fminunc用于逻辑回归问题。我在网上读到Andrew Ng用相同的论点fmincg代替, 。fminunc结果是不同的,通常fmincg更准确,但不会太多。(我将 fmincg 函数 fminunc 的结果与相同的数据进行比较)

所以,我的问题是:这两个功能有什么区别?每个函数都实现了什么算法?(现在,我只是使用这些函数而不知道它们是如何工作的)。

谢谢 :)

4

8 回答 8

54

您将不得不查看代码的内部,fmincg因为它不是 Octave 的一部分。经过一番搜索,我发现它是 Coursera 机器学习类提供的一个函数文件,作为作业的一部分。阅读有关此问题的评论和答案,以讨论算法。

于 2012-08-24T20:47:11.400 回答
24

与此处暗示 fmincg 和 fminunc 之间的主要区别是准确性或速度的其他答案相反,对于某些应用程序而言,最重要的区别可能是内存效率。在 Coursera 吴恩达的机器学习课程的编程练习 4(即神经网络训练)中,ex4.m 中关于 fmincg 的评论是

%% =================== 第 8 部分:训练 NN ===================
% 你现在已经实现了训练神经
网络所需的所有代码。为了训练你的神经网络,我们现在将使用“fmincg”,它
是一个类似于“fminunc”的函数。 回想一下,只要我们为它们提供梯度计算 ,这些
高级优化器就能够有效地训练我们的成本函数。

像原始海报一样,我也很好奇 ex4.m 的结果使用 fminunc 而不是 fmincg 可能会有什么不同。所以我尝试替换 fmincg 调用

options = optimset('MaxIter', 50);
[nn_params, cost] = fmincg(costFunction, initial_nn_params, options);

通过以下对 fminunc 的调用

options = optimset('GradObj', 'on', 'MaxIter', 50);
[nn_params, cost, exit_flag] = fminunc(costFunction, initial_nn_params, options);

但从在 Windows 上运行的 32 位 Octave 构建中收到以下错误消息:

错误:内存已用完或请求的大小对于 Octave 的索引类型范围来说太大——试图返回提示

在 Windows 上运行的 32 位版本的 MATLAB 提供了更详细的错误消息:


使用查找内存不足时出错。键入 HELP MEMORY 作为您的选项。
Spones 错误(第 14 行)
[i,j] = find(S);
颜色错误(第 26 行)
J = spones(J);
sfminbx 中的错误(第 155 行)
组 = 颜色(Hstr,p);
fminunc 中的错误(第 408 行)
[x,FVAL,~,EXITFLAG,OUTPUT,GRAD,HESSIAN] = sfminbx(funfcn,x,l,u, ...
ex4 中的错误(第 205 行)
[nn_params, cost, exit_flag] = fminunc(成本函数,initial_nn_params,选项);

我笔记本电脑上的 MATLAB memory 命令报告:

最大可能数组:2046 MB(2.146e+09 字节)*
可用于所有数组的内存:3402 MB(3.568e+09 字节)**
MATLAB 使用的内存:373 MB(3.910e+08 字节)
物理内存 (RAM) : 3561 MB (3.734e+09 bytes)
* 受限于可用的连续虚拟地址空间。
** 受限于可用的虚拟地址空间。

之前我在想 Ng 教授选择使用 fmincg 来训练 ex4.m 神经网络(有 400 个输入特征,401 包括偏置输入)来提高训练速度。然而,现在我相信他使用 fmincg 的原因是为了提高内存效率,足以允许在 Octave/MATLAB 的 32 位构建上执行训练。关于获得在 Windows 操作系统上运行的 64 位 Octave 构建的必要工作的简短讨论在这里。

于 2014-08-23T20:20:39.020 回答
14

根据 Andrew Ng 本人的说法,fmincg它不是用来获得更准确的结果(请记住,您的成本函数在任何一种情况下都是相同的,并且您的假设不会更简单或更复杂),而是因为它在对特别复杂的情况下进行梯度下降时更有效假设。他自己似乎使用fminunc了假设很少有特征但fmincg有数百个特征的地方。

于 2013-11-23T22:36:29.427 回答
9

为什么 fmincg 有效?

这是源代码的副本,其中包含解释所使用的各种算法的注释。这真是太棒了,就像孩子的大脑在学习区分狗和椅子时所做的一样。

这是 fmincg.m 的 Octave 源代码。

function [X, fX, i] = fmincg(f, X, options, P1, P2, P3, P4, P5)
% Minimize a continuous differentialble multivariate function. Starting point
% is given by "X" (D by 1), and the function named in the string "f", must
% return a function value and a vector of partial derivatives. The Polack-
% Ribiere flavour of conjugate gradients is used to compute search directions,
% and a line search using quadratic and cubic polynomial approximations and the
% Wolfe-Powell stopping criteria is used together with the slope ratio method
% for guessing initial step sizes. Additionally a bunch of checks are made to
% make sure that exploration is taking place and that extrapolation will not
% be unboundedly large. The "length" gives the length of the run: if it is
% positive, it gives the maximum number of line searches, if negative its
% absolute gives the maximum allowed number of function evaluations. You can
% (optionally) give "length" a second component, which will indicate the
% reduction in function value to be expected in the first line-search (defaults
% to 1.0). The function returns when either its length is up, or if no further
% progress can be made (ie, we are at a minimum, or so close that due to
% numerical problems, we cannot get any closer). If the function terminates
% within a few iterations, it could be an indication that the function value
% and derivatives are not consistent (ie, there may be a bug in the
% implementation of your "f" function). The function returns the found
% solution "X", a vector of function values "fX" indicating the progress made
% and "i" the number of iterations (line searches or function evaluations,
% depending on the sign of "length") used.
%
% Usage: [X, fX, i] = fmincg(f, X, options, P1, P2, P3, P4, P5)
%
% See also: checkgrad
%
% Copyright (C) 2001 and 2002 by Carl Edward Rasmussen. Date 2002-02-13
%
%
% (C) Copyright 1999, 2000 & 2001, Carl Edward Rasmussen
%
% Permission is granted for anyone to copy, use, or modify these
% programs and accompanying documents for purposes of research or
% education, provided this copyright notice is retained, and note is
% made of any changes that have been made.
%
% These programs and documents are distributed without any warranty,
% express or implied.  As the programs were written for research
% purposes only, they have not been tested to the degree that would be
% advisable in any important application.  All use of these programs is
% entirely at the user's own risk.
%
% [ml-class] Changes Made:
% 1) Function name and argument specifications
% 2) Output display
%

% Read options
if exist('options', 'var') && ~isempty(options) && isfield(options, 'MaxIter')
    length = options.MaxIter;
else
    length = 100;
end

RHO = 0.01;                            % a bunch of constants for line searches
SIG = 0.5;       % RHO and SIG are the constants in the Wolfe-Powell conditions
INT = 0.1;    % don't reevaluate within 0.1 of the limit of the current bracket
EXT = 3.0;                    % extrapolate maximum 3 times the current bracket
MAX = 20;                         % max 20 function evaluations per line search
RATIO = 100;                                      % maximum allowed slope ratio

argstr = ['feval(f, X'];                      % compose string used to call function
for i = 1:(nargin - 3)
  argstr = [argstr, ',P', int2str(i)];
end
argstr = [argstr, ')'];

if max(size(length)) == 2, red=length(2); length=length(1); else red=1; end
S=['Iteration '];

i = 0;                                            % zero the run length counter
ls_failed = 0;                             % no previous line search has failed
fX = [];
[f1 df1] = eval(argstr);                      % get function value and gradient
i = i + (length<0);                                            % count epochs?!
s = -df1;                                        % search direction is steepest
d1 = -s'*s;                                                 % this is the slope
z1 = red/(1-d1);                                  % initial step is red/(|s|+1)

while i < abs(length)                                      % while not finished
  i = i + (length>0);                                      % count iterations?!

  X0 = X; f0 = f1; df0 = df1;                   % make a copy of current values
  X = X + z1*s;                                             % begin line search
  [f2 df2] = eval(argstr);
  i = i + (length<0);                                          % count epochs?!
  d2 = df2'*s;
  f3 = f1; d3 = d1; z3 = -z1;             % initialize point 3 equal to point 1
  if length>0, M = MAX; else M = min(MAX, -length-i); end
  success = 0; limit = -1;                     % initialize quanteties
  while 1
    while ((f2 > f1+z1*RHO*d1) | (d2 > -SIG*d1)) & (M > 0)
      limit = z1;                                         % tighten the bracket
      if f2 > f1
        z2 = z3 - (0.5*d3*z3*z3)/(d3*z3+f2-f3);                 % quadratic fit
      else
        A = 6*(f2-f3)/z3+3*(d2+d3);                                 % cubic fit
        B = 3*(f3-f2)-z3*(d3+2*d2);
        z2 = (sqrt(B*B-A*d2*z3*z3)-B)/A;       % numerical error possible - ok!
      end
      if isnan(z2) | isinf(z2)
        z2 = z3/2;                  % if we had a numerical problem then bisect
      end
      z2 = max(min(z2, INT*z3),(1-INT)*z3);  % don't accept too close to limits
      z1 = z1 + z2;                                           % update the step
      X = X + z2*s;
      [f2 df2] = eval(argstr);
      M = M - 1; i = i + (length<0);                           % count epochs?!
      d2 = df2'*s;
      z3 = z3-z2;                    % z3 is now relative to the location of z2
    end
    if f2 > f1+z1*RHO*d1 | d2 > -SIG*d1
      break;                                                % this is a failure
    elseif d2 > SIG*d1
      success = 1; break;                                             % success
    elseif M == 0
      break;                                                          % failure
    end
    A = 6*(f2-f3)/z3+3*(d2+d3);                      % make cubic extrapolation
    B = 3*(f3-f2)-z3*(d3+2*d2);
    z2 = -d2*z3*z3/(B+sqrt(B*B-A*d2*z3*z3));        % num. error possible - ok!
    if ~isreal(z2) | isnan(z2) | isinf(z2) | z2 < 0   % num prob or wrong sign?
      if limit < -0.5                               % if we have no upper limit
        z2 = z1 * (EXT-1);                 % the extrapolate the maximum amount
      else
        z2 = (limit-z1)/2;                                   % otherwise bisect
      end
    elseif (limit > -0.5) & (z2+z1 > limit)          % extraplation beyond max?
      z2 = (limit-z1)/2;                                               % bisect
    elseif (limit < -0.5) & (z2+z1 > z1*EXT)       % extrapolation beyond limit
      z2 = z1*(EXT-1.0);                           % set to extrapolation limit
    elseif z2 < -z3*INT
      z2 = -z3*INT;
    elseif (limit > -0.5) & (z2 < (limit-z1)*(1.0-INT))   % too close to limit?
      z2 = (limit-z1)*(1.0-INT);
    end
    f3 = f2; d3 = d2; z3 = -z2;                  % set point 3 equal to point 2
    z1 = z1 + z2; X = X + z2*s;                      % update current estimates
    [f2 df2] = eval(argstr);
    M = M - 1; i = i + (length<0);                             % count epochs?!
    d2 = df2'*s;
  end                                                      % end of line search

  if success                                         % if line search succeeded
    f1 = f2; fX = [fX' f1]';
    fprintf('%s %4i | Cost: %4.6e\r', S, i, f1);
    s = (df2'*df2-df1'*df2)/(df1'*df1)*s - df2;      % Polack-Ribiere direction
    tmp = df1; df1 = df2; df2 = tmp;                         % swap derivatives
    d2 = df1'*s;
    if d2 > 0                                      % new slope must be negative
      s = -df1;                              % otherwise use steepest direction
      d2 = -s'*s;
    end
    z1 = z1 * min(RATIO, d1/(d2-realmin));          % slope ratio but max RATIO
    d1 = d2;
    ls_failed = 0;                              % this line search did not fail
  else
    X = X0; f1 = f0; df1 = df0;  % restore point from before failed line search
    if ls_failed | i > abs(length)          % line search failed twice in a row
      break;                             % or we ran out of time, so we give up
    end
    tmp = df1; df1 = df2; df2 = tmp;                         % swap derivatives
    s = -df1;                                                    % try steepest
    d1 = -s'*s;
    z1 = 1/(1-d1);
    ls_failed = 1;                                    % this line search failed
  end
  if exist('OCTAVE_VERSION')
    fflush(stdout);
  end
end
fprintf('\n');
于 2012-08-28T14:04:14.440 回答
2

fmincg 使用共轭梯度法

如果您查看此链接上的图片,您会发现 CG 方法的收敛速度比 fminunc 快得多,但它假设了一些我认为 fminunc 方法(BFGS)不需要的约束(共轭向量与非共轭向量)。

换句话说,fmincg 方法比 fminunc 更快但更粗略,因此它更适用于大型矩阵(许多特征,例如数千个),而不是具有多达数百个特征的较小矩阵。希望这可以帮助。

于 2018-03-05T04:16:41.167 回答
1

fmincg 比 fminunc 更准确。他们两个所花费的时间几乎相同。在神经网络或一般情况下,没有更多的权重 fminunc 可以给出内存不足错误。所以 fmincg 内存效率更高。

使用 fminunc,准确度为 93.10,所用时间为 11.3794 秒。

Testing lrCostFunction() with regularization
Cost: 2.534819
Expected cost: 2.534819
Gradients:
 0.146561
 -0.548558
 0.724722
 1.398003
Expected gradients:
 0.146561
 -0.548558
 0.724722
 1.398003
Program paused. Press enter to continue.

Training One-vs-All Logistic Regression...
id = 1512324857357
Elapsed time is 11.3794 seconds.
Program paused. Press enter to continue.

Training Set Accuracy: 93.100000

使用 fmincg,准确度为 95.12,所用时间为 11.7978 秒。

Testing lrCostFunction() with regularization
Cost: 2.534819
Expected cost: 2.534819
Gradients:
 0.146561
 -0.548558
 0.724722
 1.398003
Expected gradients:
 0.146561
 -0.548558
 0.724722
 1.398003
Program paused. Press enter to continue.

Training One-vs-All Logistic Regression...
id = 1512325280047
Elapsed time is 11.7978 seconds.

Training Set Accuracy: 95.120000
于 2017-12-03T18:36:13.273 回答
0

使用 fmincg 优化成本函数。fmincg 的工作方式与 fminunc 类似,但在处理大量参数时效率更高。在任何一种情况下,您的成本函数都是相同的,并且您的假设不会更简单或更复杂),但是因为它在对特别复杂的假设进行梯度下降时更有效。

它用于有效地利用内存。

于 2018-11-10T12:16:06.403 回答
0

fmincg 是 Coursera 上 course 开发的内部函数,不像 fminunc 是内置的 Octave 函数。由于它们都用于逻辑回归,因此它们仅在一个方面有所不同。当要考虑的参数数量相当大时(如果与训练集的大小相比),fmincg 比 fminunc 工作得更快并且处理更准确。而且,当传递给它的参数没有限制(不受约束)时,首选 fminunc。

于 2019-08-10T10:34:29.573 回答