也许变慢的是 futex,它是条件变量的构建块。这将带来一些启示:
strace -r ./test_latency 0 1 &> test_latency_strace & sleep 8 && killall test_latency
然后
for i in futex nanosleep rt_sig;do echo $i;grep $i test_latency_strace | sort -rn;done
这将显示有趣的系统调用所花费的微秒,按时间排序。
在内核 2.6.32 上
$ for i in futex nanosleep rt_sig;do echo $i;grep $i test_latency_strace | sort -rn;done
futex
1.000140 futex(0x601ac4, FUTEX_WAKE_OP_PRIVATE, 1, 1, 0x601ac0, {FUTEX_OP_SET, 0, FUTEX_OP_CMP_GT, 1}) = 1
1.000129 futex(0x601ac4, FUTEX_WAKE_OP_PRIVATE, 1, 1, 0x601ac0, {FUTEX_OP_SET, 0, FUTEX_OP_CMP_GT, 1}) = 1
1.000124 futex(0x601ac4, FUTEX_WAKE_OP_PRIVATE, 1, 1, 0x601ac0, {FUTEX_OP_SET, 0, FUTEX_OP_CMP_GT, 1}) = 1
1.000119 futex(0x601ac4, FUTEX_WAKE_OP_PRIVATE, 1, 1, 0x601ac0, {FUTEX_OP_SET, 0, FUTEX_OP_CMP_GT, 1}) = 1
1.000106 futex(0x601ac4, FUTEX_WAKE_OP_PRIVATE, 1, 1, 0x601ac0, {FUTEX_OP_SET, 0, FUTEX_OP_CMP_GT, 1}) = 1
1.000103 futex(0x601ac4, FUTEX_WAKE_OP_PRIVATE, 1, 1, 0x601ac0, {FUTEX_OP_SET, 0, FUTEX_OP_CMP_GT, 1}) = 1
1.000102 futex(0x601ac4, FUTEX_WAKE_OP_PRIVATE, 1, 1, 0x601ac0, {FUTEX_OP_SET, 0, FUTEX_OP_CMP_GT, 1}) = 1
0.000125 futex(0x7f98ce4c0b88, FUTEX_WAKE_PRIVATE, 2147483647) = 0
0.000042 futex(0x601b00, FUTEX_WAKE_PRIVATE, 1) = 1
0.000038 futex(0x601b00, FUTEX_WAKE_PRIVATE, 1) = 1
0.000037 futex(0x601b00, FUTEX_WAKE_PRIVATE, 1) = 1
0.000030 futex(0x601b00, FUTEX_WAKE_PRIVATE, 1) = 1
0.000029 futex(0x601b00, FUTEX_WAKE_PRIVATE, 1) = 0
0.000028 futex(0x601b00, FUTEX_WAKE_PRIVATE, 1) = 1
0.000027 futex(0x601b00, FUTEX_WAKE_PRIVATE, 1) = 1
0.000018 futex(0x7fff82f0ec3c, FUTEX_WAKE_PRIVATE, 1) = 0
nanosleep
0.000027 nanosleep({1, 0}, {1, 0}) = 0
0.000019 nanosleep({1, 0}, {1, 0}) = 0
0.000019 nanosleep({1, 0}, {1, 0}) = 0
0.000018 nanosleep({1, 0}, {1, 0}) = 0
0.000018 nanosleep({1, 0}, {1, 0}) = 0
0.000018 nanosleep({1, 0}, {1, 0}) = 0
0.000018 nanosleep({1, 0}, 0x7fff82f0eb40) = ? ERESTART_RESTARTBLOCK (To be restarted)
0.000017 nanosleep({1, 0}, {1, 0}) = 0
rt_sig
0.000045 rt_sigaction(SIGCHLD, NULL, {SIG_DFL, [], 0}, 8) = 0
0.000040 rt_sigaction(SIGCHLD, NULL, {SIG_DFL, [], 0}, 8) = 0
0.000038 rt_sigprocmask(SIG_SETMASK, [], NULL, 8) = 0
0.000035 rt_sigaction(SIGCHLD, NULL, {SIG_DFL, [], 0}, 8) = 0
0.000034 rt_sigaction(SIGCHLD, NULL, {SIG_DFL, [], 0}, 8) = 0
0.000033 rt_sigprocmask(SIG_SETMASK, [], NULL, 8) = 0
0.000032 rt_sigprocmask(SIG_SETMASK, [], NULL, 8) = 0
0.000032 rt_sigprocmask(SIG_BLOCK, [CHLD], [], 8) = 0
0.000031 rt_sigprocmask(SIG_BLOCK, [CHLD], [], 8) = 0
0.000031 rt_sigprocmask(SIG_BLOCK, [CHLD], [], 8) = 0
0.000028 rt_sigprocmask(SIG_BLOCK, [CHLD], [], 8) = 0
0.000028 rt_sigaction(SIGRT_1, {0x37f8c052b0, [], SA_RESTORER|SA_RESTART|SA_SIGINFO, 0x37f8c0e4c0}, NULL, 8) = 0
0.000027 rt_sigprocmask(SIG_SETMASK, [], NULL, 8) = 0
0.000027 rt_sigaction(SIGRTMIN, {0x37f8c05370, [], SA_RESTORER|SA_SIGINFO, 0x37f8c0e4c0}, NULL, 8) = 0
0.000027 rt_sigaction(SIGCHLD, NULL, {SIG_DFL, [], 0}, 8) = 0
0.000025 rt_sigaction(SIGCHLD, NULL, {SIG_DFL, [], 0}, 8) = 0
0.000025 rt_sigaction(SIGCHLD, NULL, {SIG_DFL, [], 0}, 8) = 0
0.000023 rt_sigprocmask(SIG_SETMASK, [], NULL, 8) = 0
0.000023 rt_sigprocmask(SIG_BLOCK, [CHLD], [], 8) = 0
0.000022 rt_sigprocmask(SIG_UNBLOCK, [RTMIN RT_1], NULL, 8) = 0
0.000022 rt_sigprocmask(SIG_SETMASK, [], NULL, 8) = 0
0.000021 rt_sigprocmask(SIG_SETMASK, [], NULL, 8) = 0
0.000021 rt_sigprocmask(SIG_SETMASK, [], NULL, 8) = 0
0.000021 rt_sigprocmask(SIG_BLOCK, [CHLD], [], 8) = 0
0.000021 rt_sigprocmask(SIG_BLOCK, [CHLD], [], 8) = 0
0.000021 rt_sigaction(SIGCHLD, NULL, {SIG_DFL, [], 0}, 8) = 0
0.000019 rt_sigprocmask(SIG_BLOCK, [CHLD], [], 8) = 0
在内核 3.1.9 上
$ for i in futex nanosleep rt_sig;do echo $i;grep $i test_latency_strace | sort -rn;done
futex
1.000129 futex(0x601764, FUTEX_WAKE_OP_PRIVATE, 1, 1, 0x601760, {FUTEX_OP_SET, 0, FUTEX_OP_CMP_GT, 1}) = 1
1.000126 futex(0x601764, FUTEX_WAKE_OP_PRIVATE, 1, 1, 0x601760, {FUTEX_OP_SET, 0, FUTEX_OP_CMP_GT, 1}) = 1
1.000122 futex(0x601764, FUTEX_WAKE_OP_PRIVATE, 1, 1, 0x601760, {FUTEX_OP_SET, 0, FUTEX_OP_CMP_GT, 1}) = 1
1.000115 futex(0x601764, FUTEX_WAKE_OP_PRIVATE, 1, 1, 0x601760, {FUTEX_OP_SET, 0, FUTEX_OP_CMP_GT, 1}) = 1
1.000114 futex(0x601764, FUTEX_WAKE_OP_PRIVATE, 1, 1, 0x601760, {FUTEX_OP_SET, 0, FUTEX_OP_CMP_GT, 1}) = 1
1.000112 futex(0x601764, FUTEX_WAKE_OP_PRIVATE, 1, 1, 0x601760, {FUTEX_OP_SET, 0, FUTEX_OP_CMP_GT, 1}) = 1
1.000109 futex(0x601764, FUTEX_WAKE_OP_PRIVATE, 1, 1, 0x601760, {FUTEX_OP_SET, 0, FUTEX_OP_CMP_GT, 1}) = 1
0.000139 futex(0x3f8b8f2fb0, FUTEX_WAKE_PRIVATE, 2147483647) = 0
0.000043 futex(0x601720, FUTEX_WAKE_PRIVATE, 1) = 1
0.000041 futex(0x601720, FUTEX_WAKE_PRIVATE, 1) = 1
0.000037 futex(0x601720, FUTEX_WAKE_PRIVATE, 1) = 1
0.000036 futex(0x601720, FUTEX_WAKE_PRIVATE, 1) = 1
0.000034 futex(0x601720, FUTEX_WAKE_PRIVATE, 1) = 1
0.000034 futex(0x601720, FUTEX_WAKE_PRIVATE, 1) = 1
nanosleep
0.000025 nanosleep({1, 0}, 0x7fff70091d00) = 0
0.000022 nanosleep({1, 0}, {0, 3925413}) = ? ERESTART_RESTARTBLOCK (Interrupted by signal)
0.000021 nanosleep({1, 0}, 0x7fff70091d00) = 0
0.000017 nanosleep({1, 0}, 0x7fff70091d00) = 0
0.000017 nanosleep({1, 0}, 0x7fff70091d00) = 0
0.000017 nanosleep({1, 0}, 0x7fff70091d00) = 0
0.000017 nanosleep({1, 0}, 0x7fff70091d00) = 0
0.000017 nanosleep({1, 0}, 0x7fff70091d00) = 0
rt_sig
0.000045 rt_sigprocmask(SIG_SETMASK, [], NULL, 8) = 0
0.000044 rt_sigprocmask(SIG_SETMASK, [], NULL, 8) = 0
0.000043 rt_sigprocmask(SIG_SETMASK, [], NULL, 8) = 0
0.000040 rt_sigprocmask(SIG_SETMASK, [], NULL, 8) = 0
0.000038 rt_sigaction(SIGCHLD, NULL, {SIG_DFL, [], 0}, 8) = 0
0.000037 rt_sigprocmask(SIG_SETMASK, [], NULL, 8) = 0
0.000036 rt_sigaction(SIGCHLD, NULL, {SIG_DFL, [], 0}, 8) = 0
0.000036 rt_sigaction(SIGCHLD, NULL, {SIG_DFL, [], 0}, 8) = 0
0.000035 rt_sigprocmask(SIG_SETMASK, [], NULL, 8) = 0
0.000035 rt_sigaction(SIGCHLD, NULL, {SIG_DFL, [], 0}, 8) = 0
0.000035 rt_sigaction(SIGCHLD, NULL, {SIG_DFL, [], 0}, 8) = 0
0.000035 rt_sigaction(SIGCHLD, NULL, {SIG_DFL, [], 0}, 8) = 0
0.000034 rt_sigprocmask(SIG_BLOCK, [CHLD], [], 8) = 0
0.000031 rt_sigprocmask(SIG_BLOCK, [CHLD], [], 8) = 0
0.000027 rt_sigprocmask(SIG_BLOCK, [CHLD], [], 8) = 0
0.000027 rt_sigprocmask(SIG_BLOCK, [CHLD], [], 8) = 0
0.000027 rt_sigprocmask(SIG_BLOCK, [CHLD], [], 8) = 0
0.000027 rt_sigaction(SIGRT_1, {0x3f892067b0, [], SA_RESTORER|SA_RESTART|SA_SIGINFO, 0x3f8920f500}, NULL, 8) = 0
0.000026 rt_sigprocmask(SIG_BLOCK, [CHLD], [], 8) = 0
0.000026 rt_sigprocmask(SIG_BLOCK, [CHLD], [], 8) = 0
0.000025 rt_sigaction(SIGCHLD, NULL, {SIG_DFL, [], 0}, 8) = 0
0.000024 rt_sigprocmask(SIG_SETMASK, [], NULL, 8) = 0
0.000023 rt_sigprocmask(SIG_UNBLOCK, [RTMIN RT_1], NULL, 8) = 0
0.000023 rt_sigprocmask(SIG_BLOCK, [CHLD], [], 8) = 0
0.000022 rt_sigprocmask(SIG_SETMASK, [], NULL, 8) = 0
0.000021 rt_sigaction(SIGCHLD, NULL, {SIG_DFL, [], 0}, 8) = 0
0.000019 rt_sigaction(SIGRTMIN, {0x3f89206720, [], SA_RESTORER|SA_SIGINFO, 0x3f8920f500}, NULL, 8) = 0
我发现了这个5 年前的错误报告,其中包含一个“乒乓”性能测试,比较
- 单线程 libpthread 互斥锁
- libpthread 条件变量
- 普通的旧 Unix 信号
我不得不添加
#include <stdint.h>
为了编译,我用这个命令做了
g++ -O3 -o condvar-perf condvar-perf.cpp -lpthread -lrt
在内核 2.6.32 上
$ ./condvar-perf 1000000
NPTL
mutex elapsed: 29085 us; per iteration: 29 ns / 9.4e-05 context switches.
c.v. ping-pong test elapsed: 4771993 us; per iteration: 4771 ns / 4.03 context switches.
signal ping-pong test elapsed: 8685423 us; per iteration: 8685 ns / 4.05 context switches.
在内核 3.1.9 上
$ ./condvar-perf 1000000
NPTL
mutex elapsed: 26811 us; per iteration: 26 ns / 8e-06 context switches.
c.v. ping-pong test elapsed: 10930794 us; per iteration: 10930 ns / 4.01 context switches.
signal ping-pong test elapsed: 10949670 us; per iteration: 10949 ns / 4.01 context switches.
我得出的结论是,内核 2.6.32 和 3.1.9 之间的上下文切换确实变慢了,尽管没有您在内核 3.2 中观察到的那么多。我意识到这还没有回答你的问题,我会继续挖掘。
编辑:我发现更改进程的实时优先级(两个线程)可以提高 3.1.9 的性能以匹配 2.6.32。但是,在 2.6.32 上设置相同的优先级会使其速度变慢……看图 - 我会更多地研究它。
这是我现在的结果:
在内核 2.6.32 上
$ ./condvar-perf 1000000
NPTL
mutex elapsed: 29629 us; per iteration: 29 ns / 0.000418 context switches.
c.v. ping-pong test elapsed: 6225637 us; per iteration: 6225 ns / 4.1 context switches.
signal ping-pong test elapsed: 5602248 us; per iteration: 5602 ns / 4.09 context switches.
$ chrt -f 1 ./condvar-perf 1000000
NPTL
mutex elapsed: 29049 us; per iteration: 29 ns / 0.000407 context switches.
c.v. ping-pong test elapsed: 16131360 us; per iteration: 16131 ns / 4.29 context switches.
signal ping-pong test elapsed: 11817819 us; per iteration: 11817 ns / 4.16 context switches.
$
在内核 3.1.9 上
$ ./condvar-perf 1000000
NPTL
mutex elapsed: 26830 us; per iteration: 26 ns / 5.7e-05 context switches.
c.v. ping-pong test elapsed: 12812788 us; per iteration: 12812 ns / 4.01 context switches.
signal ping-pong test elapsed: 13126865 us; per iteration: 13126 ns / 4.01 context switches.
$ chrt -f 1 ./condvar-perf 1000000
NPTL
mutex elapsed: 27025 us; per iteration: 27 ns / 3.7e-05 context switches.
c.v. ping-pong test elapsed: 5099885 us; per iteration: 5099 ns / 4 context switches.
signal ping-pong test elapsed: 5508227 us; per iteration: 5508 ns / 4 context switches.
$