我有一些 ADT 代表 Haskell 中的简单几何树。将我的操作类型与树形结构分开的事情让我很困扰。我正在考虑让 Tree 类型包含运算符的构造函数,看起来它会更干净。我看到的一个问题是我的 Zipper 实现必须改变以反映所有这些新的可能的构造函数。有没有办法解决?还是我错过了一些重要的概念?总的来说,我觉得我很难掌握如何在 Haskell 中构建我的程序。我了解大多数概念、ADT、类型类、单子,但我还不了解大局。谢谢。
module FRep.Tree
(Tree(‥)
,Primitive(‥)
,UnaryOp(‥)
,BinaryOp(‥)
,TernaryOp(‥)
,sphere
,block
,transform
,union
,intersect
,subtract
,eval
) where
import Data.Vect.Double
--import qualified Data.Foldable as F
import Prelude hiding (subtract)
--import Data.Monoid
data Tree = Leaf Primitive
| Unary UnaryOp Tree
| Binary BinaryOp Tree Tree
| Ternary TernaryOp Tree Tree Tree
deriving (Show)
sphere ∷ Double → Tree
sphere a = Leaf (Sphere a)
block ∷ Vec3 → Tree
block v = Leaf (Block v)
transform ∷ Proj4 → Tree → Tree
transform m t1 = Unary (Transform m) t1
union ∷ Tree → Tree → Tree
union t1 t2 = Binary Union t1 t2
intersect ∷ Tree → Tree → Tree
intersect t1 t2 = Binary Intersect t1 t2
subtract ∷ Tree → Tree → Tree
subtract t1 t2 = Binary Subtract t1 t2
data Primitive = Sphere { radius ∷ Double }
| Block { size ∷ Vec3 }
| Cone { radius ∷ Double
, height ∷ Double }
deriving (Show)
data UnaryOp = Transform Proj4
deriving (Show)
data BinaryOp = Union
| Intersect
| Subtract
deriving (Show)
data TernaryOp = Blend Double Double Double
deriving (Show)
primitive ∷ Primitive → Vec3 → Double
primitive (Sphere r) (Vec3 x y z) = r - sqrt (x*x + y*y + z*z)
primitive (Block (Vec3 w h d)) (Vec3 x y z) = maximum [inRange w x, inRange h y, inRange d z]
where inRange a b = abs b - a/2.0
primitive (Cone r h) (Vec3 x y z) = undefined
unaryOp ∷ UnaryOp → Vec3 → Vec3
unaryOp (Transform m) v = trim (v' .* (fromProjective (inverse m)))
where v' = extendWith 1 v ∷ Vec4
binaryOp ∷ BinaryOp → Double → Double → Double
binaryOp Union f1 f2 = f1 + f2 + sqrt (f1*f1 + f2*f2)
binaryOp Intersect f1 f2 = f1 + f2 - sqrt (f1*f1 + f2*f2)
binaryOp Subtract f1 f2 = binaryOp Intersect f1 (negate f2)
ternaryOp ∷ TernaryOp → Double → Double → Double → Double
ternaryOp (Blend a b c) f1 f2 f3 = undefined
eval ∷ Tree → Vec3 → Double
eval (Leaf a) v = primitive a v
eval (Unary a t) v = eval t (unaryOp a v)
eval (Binary a t1 t2) v = binaryOp a (eval t1 v) (eval t2 v)
eval (Ternary a t1 t2 t3) v = ternaryOp a (eval t1 v) (eval t2 v) (eval t3 v)
--Here's the Zipper--------------------------
module FRep.Tree.Zipper
(Zipper
,down
,up
,left
,right
,fromZipper
,toZipper
,getFocus
,setFocus
) where
import FRep.Tree
type Zipper = (Tree, Context)
data Context = Root
| Unary1 UnaryOp Context
| Binary1 BinaryOp Context Tree
| Binary2 BinaryOp Tree Context
| Ternary1 TernaryOp Context Tree Tree
| Ternary2 TernaryOp Tree Context Tree
| Ternary3 TernaryOp Tree Tree Context
down ∷ Zipper → Maybe (Zipper)
down (Leaf p, c) = Nothing
down (Unary o t1, c) = Just (t1, Unary1 o c)
down (Binary o t1 t2, c) = Just (t1, Binary1 o c t2)
down (Ternary o t1 t2 t3, c) = Just (t1, Ternary1 o c t2 t3)
up ∷ Zipper → Maybe (Zipper)
up (t1, Root) = Nothing
up (t1, Unary1 o c) = Just (Unary o t1, c)
up (t1, Binary1 o c t2) = Just (Binary o t1 t2, c)
up (t2, Binary2 o t1 c) = Just (Binary o t1 t2, c)
up (t1, Ternary1 o c t2 t3) = Just (Ternary o t1 t2 t3, c)
up (t2, Ternary2 o t1 c t3) = Just (Ternary o t1 t2 t3, c)
up (t3, Ternary3 o t1 t2 c) = Just (Ternary o t1 t2 t3, c)
left ∷ Zipper → Maybe (Zipper)
left (t1, Root) = Nothing
left (t1, Unary1 o c) = Nothing
left (t1, Binary1 o c t2) = Nothing
left (t2, Binary2 o t1 c) = Just (t1, Binary1 o c t2)
left (t1, Ternary1 o c t2 t3) = Nothing
left (t2, Ternary2 o t1 c t3) = Just (t1, Ternary1 o c t2 t3)
left (t3, Ternary3 o t1 t2 c) = Just (t2, Ternary2 o t1 c t3)
right ∷ Zipper → Maybe (Zipper)
right (t1, Root) = Nothing
right (t1, Unary1 o c) = Nothing
right (t1, Binary1 o c t2) = Just (t2, Binary2 o t1 c)
right (t2, Binary2 o t1 c) = Nothing
right (t1, Ternary1 o c t2 t3) = Just (t2, Ternary2 o t1 c t3)
right (t2, Ternary2 o t1 c t3) = Just (t3, Ternary3 o t1 t2 c)
right (t3, Ternary3 o t1 t2 c) = Nothing
fromZipper ∷ Zipper → Tree
fromZipper z = f z where
f ∷ Zipper → Tree
f (t1, Root) = t1
f (t1, Unary1 o c) = f (Unary o t1, c)
f (t1, Binary1 o c t2) = f (Binary o t1 t2, c)
f (t2, Binary2 o t1 c) = f (Binary o t1 t2, c)
f (t1, Ternary1 o c t2 t3) = f (Ternary o t1 t2 t3, c)
f (t2, Ternary2 o t1 c t3) = f (Ternary o t1 t2 t3, c)
f (t3, Ternary3 o t1 t2 c) = f (Ternary o t1 t2 t3, c)
toZipper ∷ Tree → Zipper
toZipper t = (t, Root)
getFocus ∷ Zipper → Tree
getFocus (t, _) = t
setFocus ∷ Tree → Zipper → Zipper
setFocus t (_, c) = (t, c)