正如所承诺的,一段代码展示了我如何让相机始终注视空间中的特定点。
首先,我们需要一种从角度和轴构造四元数的方法,我碰巧在 pastebin 上有这个方法,角度输入以弧度为单位:
http://pastebin.com/vLcx4Qqh
确保您没有输入轴 (0,0,0),这没有任何意义。
现在是实际的更新方法,我们需要让四元数将相机从默认方向旋转到指向目标点。请注意我刚刚写了这个,它可能需要一点调试,可能需要一点优化,但这至少应该给你一个正确的方向。
void camera::update()
{
// First get the direction from the camera's position to the target point
vec3 lookAtDir = m_targetPoint - m_position;
// I'm going to divide the vector into two 'components', the Y axis rotation
// and the Up/Down rotation, like a regular camera would work.
// First to calculate the rotation around the Y axis, so we zero out the y
// component:
vec3 lookAtHorizontal = vec3(lookAtDir.x, 0.0f, lookAtDir.z).normalize();
// Get the quaternion from 'default' direction to the horizontal direction
// In this case, 'default' direction is along the -z axis, like most OpenGL
// programs. Make sure the projection matrix works according to this.
float angle = acos(vec3(0.0f, 0.0f, -1.0f).dot(lookAtHorizontal));
quaternion horizontalOrient(angle, vec3(0.0f, 1.0f, 0.0f));
// Since we already stripped the Y component, we can simply get the up/down
// rotation from it as well.
angle = acos(lookAtDir.normalize().dot(lookAtHorizontal));
if(angle) horizontalOrient *= quaternion(angle, lookAtDir.cross(lookAtHorizontal));
// ...
m_orientation = horizontalOrient;
}
现在实际拍摄m_orientation
并m_position
获得世界 -> 相机矩阵
// First inverse each element (-position and inverse the quaternion),
// the position is rotated since the position within a matrix is 'added' last
// to the output vector, so it needs to account for rotation of the space.
mat3 rotationMatrix = m_orientation.inverse().toMatrix();
vec3 inverseTranslate = rotationMatrix * -m_position; // Note the minus
mat4 matrix = mat3; // just means the matrix is expanded, the last entry (bottom right of the matrix) is a 1.0f like an identity matrix would be.
// This bit is row-major in my case, you just need to set the translation of the matrix.
matrix[3] = inverseTranslate.x;
matrix[7] = inverseTranslate.y;
matrix[11] = inverseTranslate.z;
编辑 我认为这应该很明显,但只是为了完整性,.dot() 采用向量的点积,.cross() 采用叉积,执行该方法的对象是向量 A,方法的参数是向量B.