您可以按照下面的测试程序(使用 GCC 4.7.0 或 clang 3.1 构建)进行说明。
如果该方法存在并且是公共的,has_void_foo_no_args_const<T>::eval(T const & t)
则将调用静态模板函数。如果没有这样的方法,它什么也做不了。(如果方法是私有的,当然会导致编译错误。)t.foo()
void T::foo() const
这个解决方案是从我在这里贡献的方法内省模板改编和扩展的。您可以阅读该答案以了解 SNIFAE 逻辑的工作原理,并了解如何推广该技术以参数化您正在探测的函数签名的属性。
#include <iostream>
/*! The template `has_void_foo_no_args_const<T>` exports a
boolean constant `value` that is true iff `T` provides
`void foo() const`
It also provides `static void eval(T const & t)`, which
invokes void `T::foo() const` upon `t` if such a public member
function exists and is a no-op if there is no such member.
*/
template< typename T>
struct has_void_foo_no_args_const
{
/* SFINAE foo-has-correct-sig :) */
template<typename A>
static std::true_type test(void (A::*)() const) {
return std::true_type();
}
/* SFINAE foo-exists :) */
template <typename A>
static decltype(test(&A::foo))
test(decltype(&A::foo),void *) {
/* foo exists. What about sig? */
typedef decltype(test(&A::foo)) return_type;
return return_type();
}
/* SFINAE game over :( */
template<typename A>
static std::false_type test(...) {
return std::false_type();
}
/* This will be either `std::true_type` or `std::false_type` */
typedef decltype(test<T>(0,0)) type;
static const bool value = type::value; /* Which is it? */
/* `eval(T const &,std::true_type)`
delegates to `T::foo()` when `type` == `std::true_type`
*/
static void eval(T const & t, std::true_type) {
t.foo();
}
/* `eval(...)` is a no-op for otherwise unmatched arguments */
static void eval(...){
// This output for demo purposes. Delete
std::cout << "T::foo() not called" << std::endl;
}
/* `eval(T const & t)` delegates to :-
- `eval(t,type()` when `type` == `std::true_type`
- `eval(...)` otherwise
*/
static void eval(T const & t) {
eval(t,type());
}
};
// For testing
struct AA {
void foo() const {
std::cout << "AA::foo() called" << std::endl;
}
};
// For testing
struct BB {
void foo() {
std::cout << "BB::foo() called" << std::endl;
}
};
// For testing
struct CC {
int foo() const {
std::cout << "CC::foo() called" << std::endl;
return 0;
}
};
// This is the desired implementation of `void f(T const& val)`
template<class T>
void f(T const& val) {
has_void_foo_no_args_const<T>::eval(val);
}
int main() {
AA aa;
std::cout << (has_void_foo_no_args_const<AA>::value ?
"AA has void foo() const" : "AA does not have void foo() const")
<< std::endl;
f(aa);
BB bb;
std::cout << (has_void_foo_no_args_const<BB>::value ?
"BB has void foo() const" : "BB does not have void foo() const")
<< std::endl;
f(bb);
CC cc;
std::cout << (has_void_foo_no_args_const<CC>::value ?
"CC has void foo() const" : "CC does not have void foo() const")
<< std::endl;
f(cc);
std::cout << (has_void_foo_no_args_const<double>::value ?
"Double has void foo() const" : "Double does not have void foo() const")
<< std::endl;
f(3.14);
return 0;
}
该程序输出:
AA has void foo() const
AA::foo() called
BB does not have void foo() const
T::foo() not called
CC does not have void foo() const
T::foo() not called
Double does not have void foo() const
T::foo() not called