0

我想知道是否有办法让计算 IRR 更简单?例如,我有稳定的收入 $500/月,我想看看 6 个月、12 个月、18 个月等的 IRR。

目前,我必须创建三列,一列 6 行 500 美元,一列 12 行 500 美元,等等。

有没有办法简化计算?

PS 实际上有一个不同的最后付款值,所以我不能创建 12 行并选择相同值的子集。

4

1 回答 1

3

已编辑 阅读 lori-m 的评论后,我在回复中添加了更多内容,以说明 Excel RATE 函数在内部执行的 RATE 计算


原始回复

我假设最后一个值是负数,因为您至少需要一个负数才能找到IRR

当年金金额为固定金额时,可选择使用Excel RATE函数计算内部收益率

RATE 函数接受以下值

=RATE(NPER,PMT,PV,[FV],类型)

NPER 将是您的案例 6、12、18 中的周期数

在这种情况下,PMT 是定期付款 500

PV 是年金的现值,如果它是流出的现金流,那么您需要将其指定为负数

FV 是残值

RATE函数的使用要求以下值中至少一个或最多两个必须为负FV、PV或PMT

然而,从你写的内容来看,你甚至可能没有负现金流,因此无法使用 IRR 或 RATE 函数


以下文本显示了 RATE 函数如何使用TVM 方程计算内部收益率或简单的收益率

Newton Raphson Method IRR Calculation with TVM equation = 0

TVM Eq. 1: PV(1+i)^N + PMT(1+i*type)[(1+i)^N -1]/i + FV = 0

f(i) = 0 + 500 * (1 + i * 0) [(1+i)^6 - 1)]/i + -2500 * (1+i)^6

f'(i) = (500 * ( 6 * i * (1 + i)^(5+0) - (1 + i)^6) + 1) / (i * i)) + 6 * -2500 * (1+0.1)^5

i0 = 0.1
f(i1) = -571.0975
f'(i1) = -14420.4
i1 = 0.1 - -571.0975/-14420.4 = 0.0603965562675
Error Bound = 0.0603965562675 - 0.1 = 0.039603 > 0.000001

i1 = 0.0603965562675
f(i2) = -63.1212
f'(i2) = -11318.2776
i2 = 0.0603965562675 - -63.1212/-11318.2776 = 0.0548196309075
Error Bound = 0.0548196309075 - 0.0603965562675 = 0.005577 > 0.000001

i2 = 0.0548196309075
f(i3) = -1.1104
f'(i3) = -10921.6385
i3 = 0.0548196309075 - -1.1104/-10921.6385 = 0.0547179582964
Error Bound = 0.0547179582964 - 0.0548196309075 = 0.000102 > 0.000001

i3 = 0.0547179582964
f(i4) = -0.0004
f'(i4) = -10914.4953
i4 = 0.0547179582964 - -0.0004/-10914.4953 = 0.0547179250235
Error Bound = 0.0547179250235 - 0.0547179582964 = 0 < 0.000001
IRR = 5.47%


Newton Raphson Method IRR Calculation with TVM equation = 0

TVM Eq. 2: PV + PMT(1+i*type)[1-{(1+i)^-N}]/i + FV(1+i)^-N = 0

f(i) = -2500 + 500 * (1 + i * 0) [1 - (1+i)^-6)]/i + 0 * (1+i)^-6

f'(i) = (-500 * (1+i)^-6 * ((1+i)^6 - 6 * i - 1) /(i*i)) + (0 * -6 * (1+i)^(-6-1))

i0 = 0.1
f(i1) = -322.3697
f'(i1) = -4842.0856
i1 = 0.1 - -322.3697/-4842.0856 = 0.0334233887655
Error Bound = 0.0334233887655 - 0.1 = 0.066577 > 0.000001

i1 = 0.0334233887655
f(i2) = 178.1297
f'(i2) = -6438.6863
i2 = 0.0334233887655 - 178.1297/-6438.6863 = 0.0610889228796
Error Bound = 0.0610889228796 - 0.0334233887655 = 0.027666 > 0.000001

i2 = 0.0610889228796
f(i3) = -49.7272
f'(i3) = -5702.834
i3 = 0.0610889228796 - -49.7272/-5702.834 = 0.0523691914645
Error Bound = 0.0523691914645 - 0.0610889228796 = 0.00872 > 0.000001

i3 = 0.0523691914645
f(i4) = 18.7303
f'(i4) = -5922.4426
i4 = 0.0523691914645 - 18.7303/-5922.4426 = 0.055531790412
Error Bound = 0.055531790412 - 0.0523691914645 = 0.003163 > 0.000001

i4 = 0.055531790412
f(i5) = -6.4397
f'(i5) = -5841.5461
i5 = 0.055531790412 - -6.4397/-5841.5461 = 0.054429394433
Error Bound = 0.054429394433 - 0.055531790412 = 0.001102 > 0.000001

i5 = 0.054429394433
f(i6) = 2.2892
f'(i6) = -5869.581
i6 = 0.054429394433 - 2.2892/-5869.581 = 0.0548194083235
Error Bound = 0.0548194083235 - 0.054429394433 = 0.00039 > 0.000001

i6 = 0.0548194083235
f(i7) = -0.8044
f'(i7) = -5859.6427
i7 = 0.0548194083235 - -0.8044/-5859.6427 = 0.0546821305725
Error Bound = 0.0546821305725 - 0.0548194083235 = 0.000137 > 0.000001

i7 = 0.0546821305725
f(i8) = 0.2838
f'(i8) = -5863.1383
i8 = 0.0546821305725 - 0.2838/-5863.1383 = 0.0547305377303
Error Bound = 0.0547305377303 - 0.0546821305725 = 4.8E-5 > 0.000001

i8 = 0.0547305377303
f(i9) = -0.1
f'(i9) = -5861.9054
i9 = 0.0547305377303 - -0.1/-5861.9054 = 0.0547134792018
Error Bound = 0.0547134792018 - 0.0547305377303 = 1.7E-5 > 0.000001

i9 = 0.0547134792018
f(i10) = 0.0352
f'(i10) = -5862.3398
i10 = 0.0547134792018 - 0.0352/-5862.3398 = 0.054719491928
Error Bound = 0.054719491928 - 0.0547134792018 = 6.0E-6 > 0.000001

i10 = 0.054719491928
f(i11) = -0.0124
f'(i11) = -5862.1867
i11 = 0.054719491928 - -0.0124/-5862.1867 = 0.0547173727531
Error Bound = 0.0547173727531 - 0.054719491928 = 2.0E-6 > 0.000001

i11 = 0.0547173727531
f(i12) = 0.0044
f'(i12) = -5862.2407
i12 = 0.0547173727531 - 0.0044/-5862.2407 = 0.0547181196735
Error Bound = 0.0547181196735 - 0.0547173727531 = 1.0E-6 < 0.000001
IRR = 5.47%
于 2012-08-17T10:23:44.533 回答